EPFL Logo CENTER FOR
DIGITAL TRUST
Neural Anisotropy Directions

Neural Anisotropy Directions

Analyzing the role of the network architecture in shaping the inductive bias of deep classifiers.

In this work, we analyze the role of the network architecture in shaping the inductive bias of deep classifiers. To that end, we start by focusing on a very simple problem, i.e., classifying a class of linearly separable distributions, and show that, depending on the direction of the discriminative feature of the distribution, many state-of-the-art deep convolutional neural networks (CNNs) have a surprisingly hard time solving this simple task. We then define as neural anisotropy directions (NADs) the vectors that encapsulate the directional inductive bias of an architecture. These vectors, which are specific for each architecture and hence act as a signature, encode the preference of a network to separate the input data based on some particular features. We provide an efficient method to identify NADs for several CNN architectures and thus reveal their directional inductive biases. Furthermore, we show that, for the CIFAR-10 dataset, NADs characterize the features used by CNNs to discriminate between different classes.

Deep Neural NetworksFeaturesInductive Bias
Key facts
Maturity
Support
C4DT
Inactive
Lab
Unknown
  • Technical
  • Research papers

Signal Processing Laboratory

Signal Processing Laboratory
Pascal Frossard

Prof. Pascal Frossard

The Signal Processing Laboratory (LTS4) is a team of researchers led by Prof. Pascal Frossard, working in the Electrical Engineering Institute of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
The group research focuses on image processing, graph signal processing and machine learning, as well as closely related fields such as network data analysis, distributed signal processing, image and video coding and immersive communications. We work at the frontier between signal processing, machine learning and applied mathematics.

This page was last edited on 2024-03-21.