DISCO (DIStilled COunterfactual Data) is a method for automatically generating high-quality counterfactual data at scale. It uses a large general language model to generate phrasal perturbations, which are then filtered by a task-specific teacher model to distill high-quality counterfactual data. The method has been applied to natural language inference tasks, demonstrating improved robustness and generalization across distributions.
This page was last edited on 2024-02-20.
This page was last edited on 2024-02-20.