Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning con-text, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in ML often excessively reduces accuracy. Bayesian differential privacy (BDP) takes into account the data distribution to provide more practical privacy guarantees.
This page was last edited on 2024-03-20.
This page was last edited on 2024-03-20.