Why accumulation schemes

Giacomo Fenzi EPFL

Swisscrypto day 31/10/2025

Based on joint work with

Benedikt Bünz

Alessandro Chiesa

William Wang



ePrint 2025/753

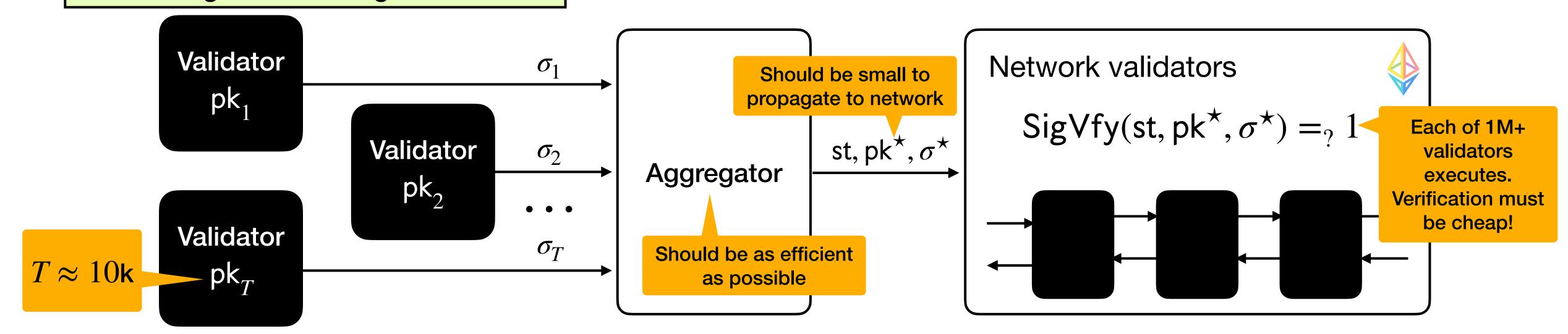
NYU

Accumulation schemes

Application: PQ-signature aggregation

Ethereum's consensus

- (1) Randomly chosen subcommittee of validators agrees on a state st
- (2) Each validator in the committee generates a signature
- (3) Aggregator batches signatures into single one
- (4) & propagates to the network
- (5) Each validator checks the aggregated signature



Today: BLS signatures. Ethereum is looking for a post-quantum alternative.

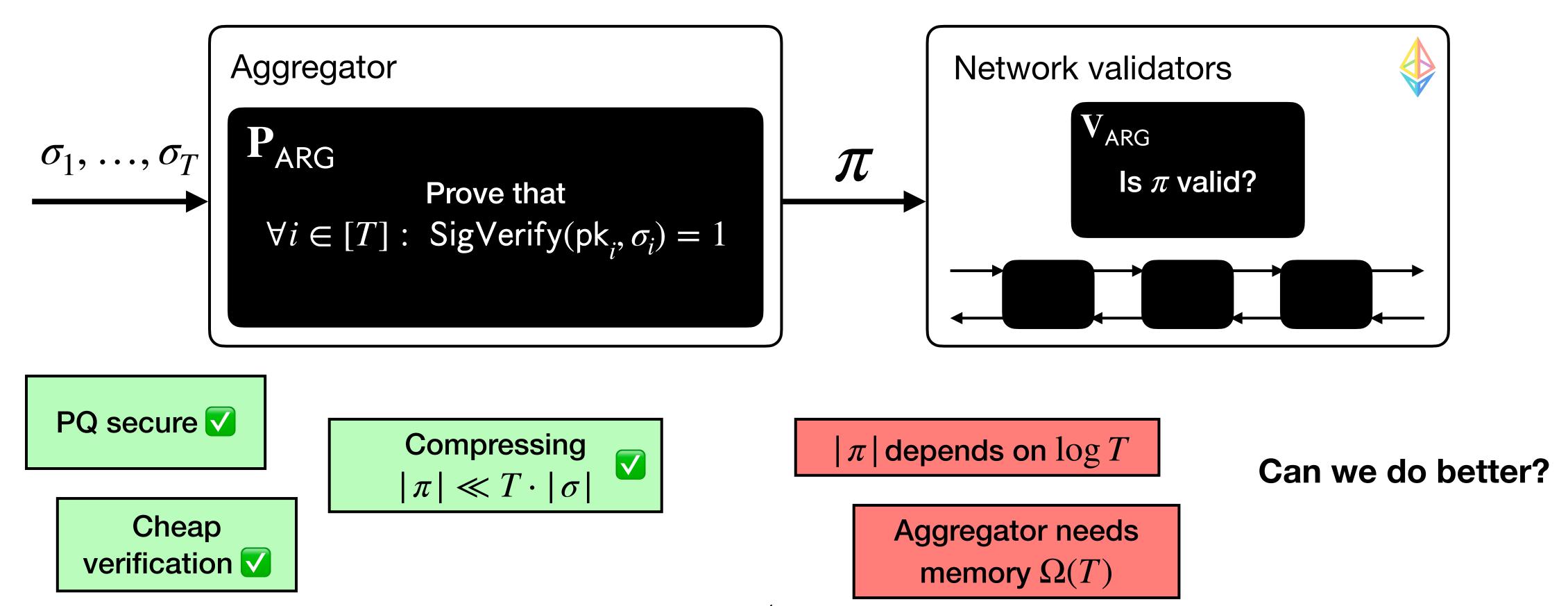
Idea: a pq-signature such as hash-based XMSS? Problem: how to efficiently aggregate? (no homomorphisms...)

Application: PQ-signature aggregation

A first idea: use a pqSNARK



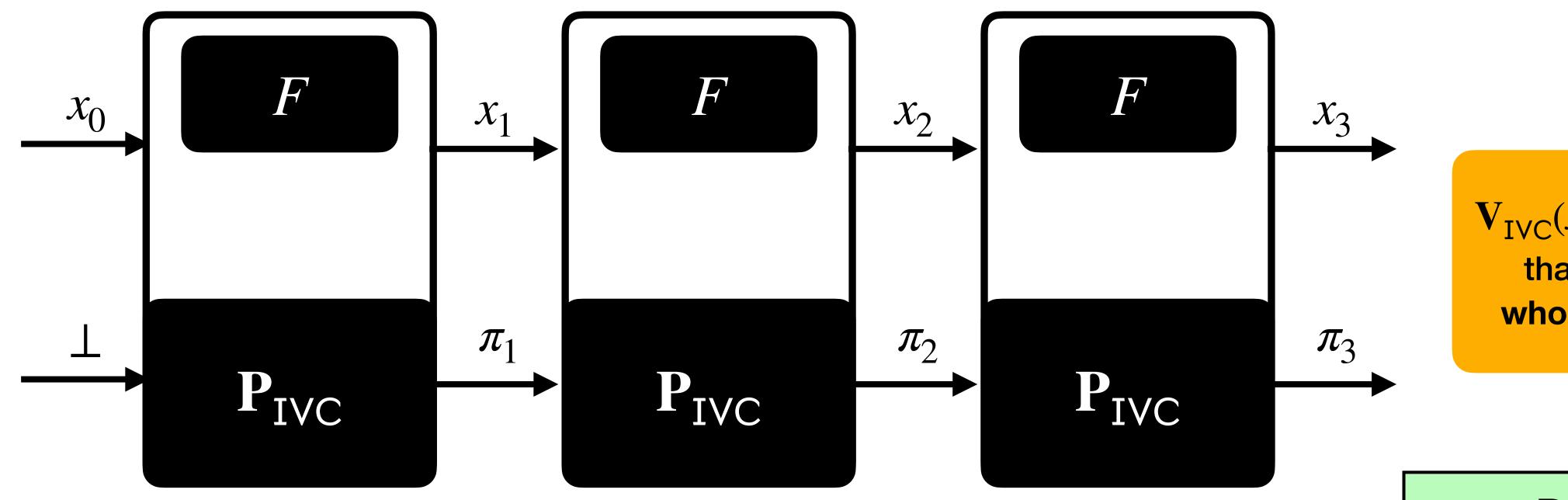
Let $(\mathbf{P}_{\mathsf{ARG}}, \mathbf{V}_{\mathsf{ARG}})$ be a general purpose pqSNARK (e.g. Spartan+WHIR).



Incrementally Verifiable Computation (IVC)

To prove $x_T = F^T(x_0)$, prove $\exists x_1, ..., x_{T-1}$ such that $\forall i \in [T], x_i = F(x_{i-1})$.

In signature aggregation: $F((\sigma_i, pk_i), b_i) := b_i \land \mathsf{SigVfy}(\mathsf{st}, pk_i, \sigma_i)$



 $\mathbf{V}_{\mathrm{IVC}}(x_{i-1}, x_i, \pi_i)$ checks that π_i attests the whole computation!

IVC can be generalized to Proof-Carrying-Data (PCD).

PCD considers a directed acyclic graph instead of a line.

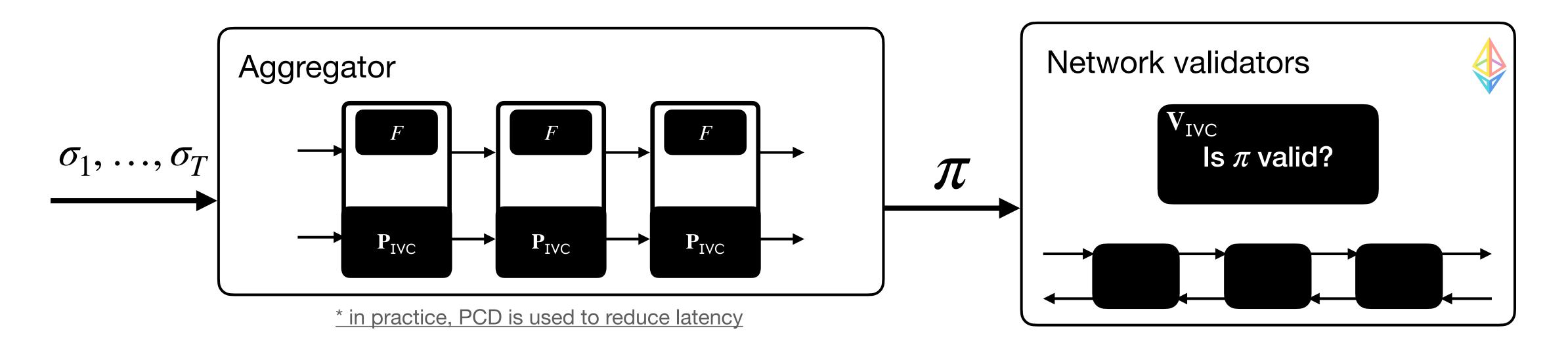
PCD in practice is preferable to IVC, as it enables reducing the prover's latency.

 P_{IVC} costs independent from T

Let's apply IVC to the initial idea.

Application: PQ-signature aggregation

Let (P_{IVC}, V_{IVC}) be a post-quantum secure IVC scheme.



PQ secure V

Final blueprint:

 $|\pi|$ independent from T

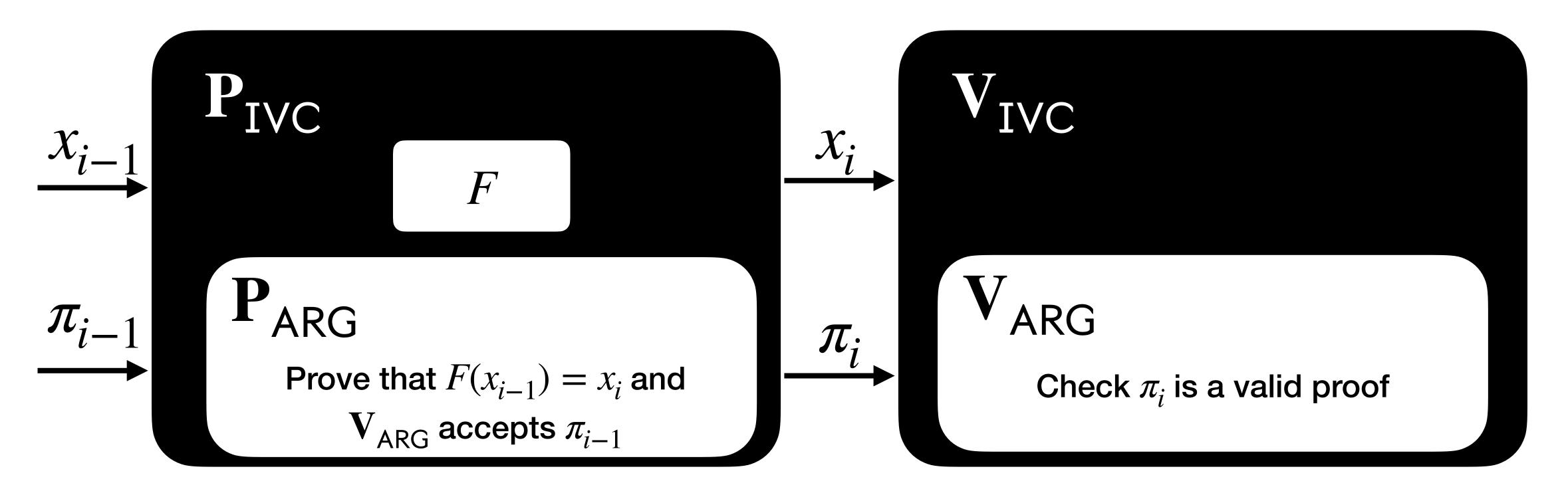
Cheap aggregator

Cheap verification

IVC from SNARKs

Recursive proof composition

(*) more complex than this, needs preprocessing



PQ SNARK

⇒ PQ IVC ✓

Cheap verification

 π | independent from T

Memory costs independent from T

Cost of $\mathbf{P}_{\mathrm{IVC}} \approx |F| + |\mathbf{V}_{\mathrm{ARG}}|$ Concretely: $|\mathbf{V}_{\mathrm{ARG}}| \approx 2^{20}$ constraints i.e. recursive overhead is quite large Good starting point, but can be improved!

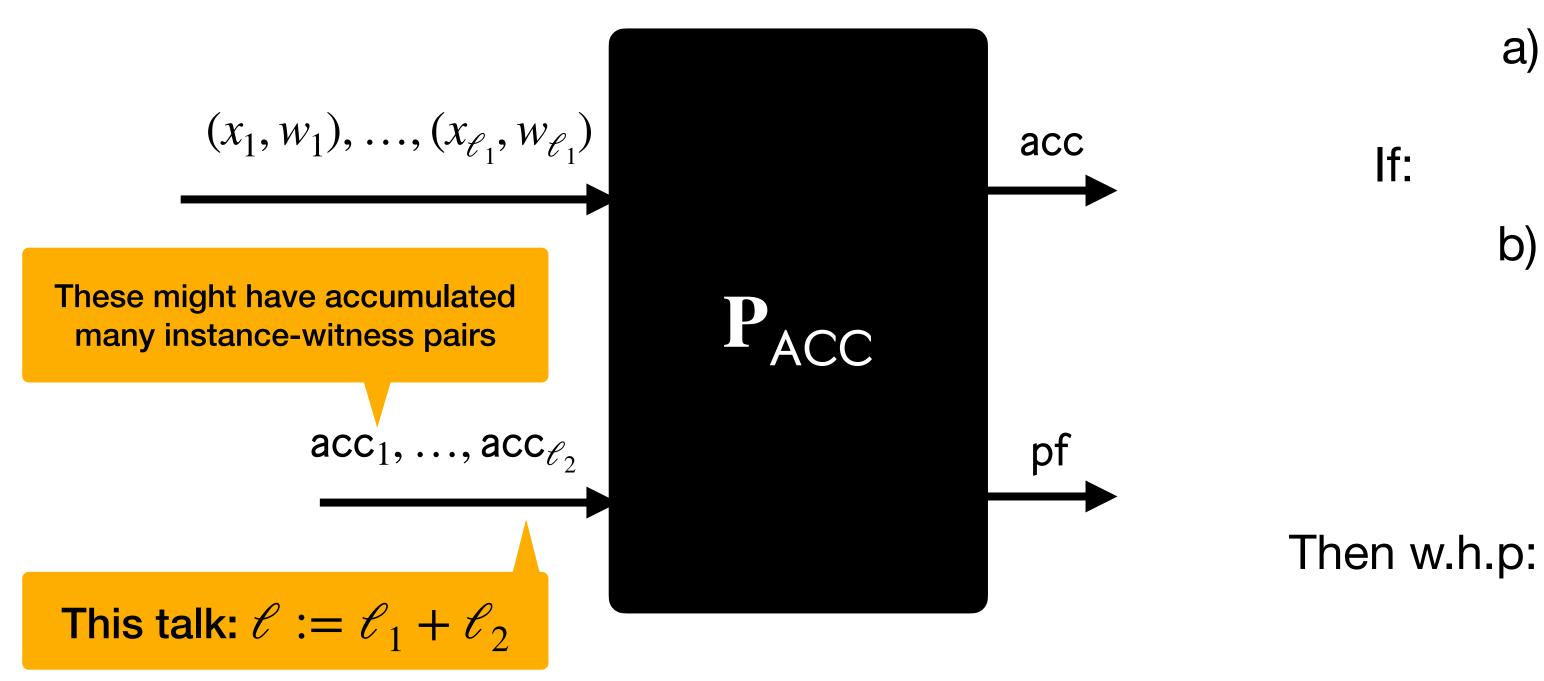
Accumulation Schemes

A lightweight tool for batching

Enables batching many checks $(x_i, w_i) \in \Re$ into an accumulator acc.

 V_{ACC} verifies that adding the inputs into acc was done correctly

 $\mathbf{D}_{\mathsf{ACC}}$ decides whether acc is valid.



Any ARG yields ACC with $|\mathbf{V}_{\text{ACC}}| \approx \ell_1 \cdot |\mathbf{V}_{\text{ARG}}|.$ We can do (significantly) better!

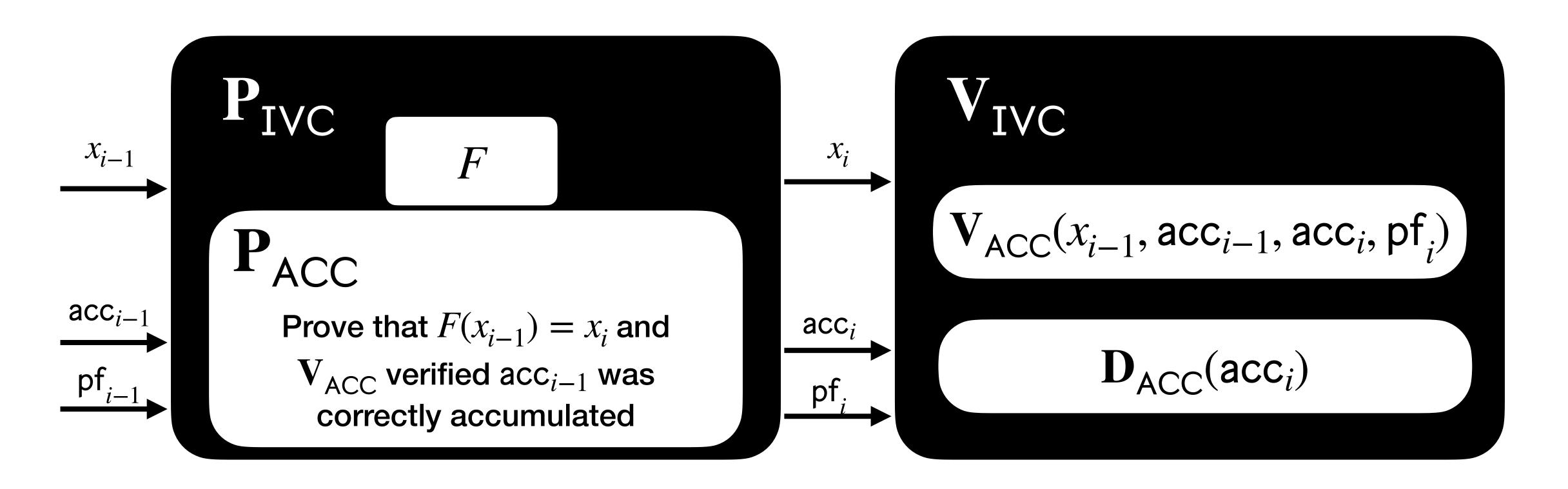
 $\mathbf{V}_{\mathsf{ACC}}((x_i)_i,(\mathsf{acc}_j)_j,\mathsf{acc},\mathsf{pf})=1$

 $\mathbf{D}_{\mathsf{ACC}}(\mathsf{acc}) = 1$

 $\forall i \in [\ell_1] : (x_i, w_i) \in \mathcal{R}$ $\forall j \in [\ell_2] : \mathbf{D}_{\mathsf{ACC}}(\mathsf{acc}_j) = 1$

IVC from accumulation

(*) actually we need a more refined notion: "split" accumulation schemes



PQ Accumulation \Longrightarrow PQ IVC \checkmark

Memory costs independent from T

 π independent from T $\ll |\mathbf{V}_{\mathsf{ARG}}|$ Cost of $P_{IVC} \approx |F| + |V_{ACC}|$

Not succinct

Cost of $V_{IVC} \approx |V_{ACC}| + |D_{ACC}|$

Wrap with a final SNARK

⇒ succinct verification ✓

One more thing... ACC is not limited to signature aggregation

+ At least 20 more...

Accumulation schemes are broadly useful for integrity in distributed systems with repeated computations.

Verifiable Virtual Machines (VVMs)

RISC ZERO

Digital provenance

Eva: Efficient Privacy-Preserving Proof of Authenticity for Lossily Encoded Videos

Chengru Zhang¹, Xiao Yang², David Oswald², Mark Ryan², and Philipp Jovanovic⁵

Consensus

Breaking the $O(\sqrt{n})$ -Bit Barrier: Byzantine Agreement with Polylog Bits Per Party

> Aarushi Goel[‡] Ran Cohen[†] Elette Boyle*

And more...

Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs Sebastian Angel* Eleftherios Ioannidis* Elizabeth Margolin* Srinath Setty† Jess Woods*

*University of Pennsylvania †Microsoft Research

ALPACA: Anonymous Blocklisting with Constant-Sized Updatable Proofs

Abhiram Kothapalli

Orestis Chardouvelis

Paul Grubbs University of Michigan

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Bonel

Accumulation schemes:

NEXUS

Group-based

Nova, Supernova, Hypernova, Protostar, Protogalaxy, NeutronNova, KZHFold, ...

Must use 256-bit fields, accumulation time super-linear, cycles of curves required for recursion, not pq

Very promising, accumulation costs superlinear, plausibly pq some field flexibility

Lattice-based

Latticefold, Lova, Latticefold+, Neo, Symphony

Hash-based

Awh, ARC, WARP 6, Quasar

Accumulation costs can be linear, plausibly pq, full field flexibility

Our results

An essentially optimal hash-based accumulation scheme

To accumulate ℓ instances of $\mathcal{R}_{\mathsf{PESAT}}(\mathbb{F})$ and accumulators

Same complexity as deciding the instances and accumulators!

Very flexible generalization of R1CS

Prover cost: $O(\mathcal{C} \cdot |\hat{\mathbf{p}}|)$ F-ops and O(k) random oracle queries

Verifier cost: $O(\ell \cdot (\log N + \log M + \lambda))$ F-ops and $O(\ell \cdot \lambda \cdot \log k)$ random oracle queries **Optimal for hash-based**

Decider cost: $O(\hat{\mathbf{p}})$ \mathbb{F} -ops and O(k) random oracle queries

Secure in the pure random oracle model (no other cryptography needed). Can be instantiated over **every** F that is sufficiently large for soundness.

In fact, can be instantiated over every Fusing field extensions.
Asymptotics vary.

Give me a code, any code! Any linear error correcting code $\mathscr C$ gives an hash-based accumulation scheme.

In this slide $\ell = O(1)$

Comparison

	hash-based?	linear prover?	verifier size (RO queries)
Brakedown			$O(\lambda \cdot \sqrt{k})$
Blaze			$O(\lambda \cdot \log^2 k)$
Group or lattice-based accumulation (Nova, etc.)	×	X	O(1)
Arc		×	$O(\lambda \cdot \log k)$ (S
This work			$O(\lambda \cdot \log k)$
FACS (concurrent)			$O(\lambda \cdot \log k)$

Sest constants
(See paper for accounting)

Conclusion

Recap

Lots I could not cover today!

Out of domain samples for general linear codes

Twin-constraint pseudobatching

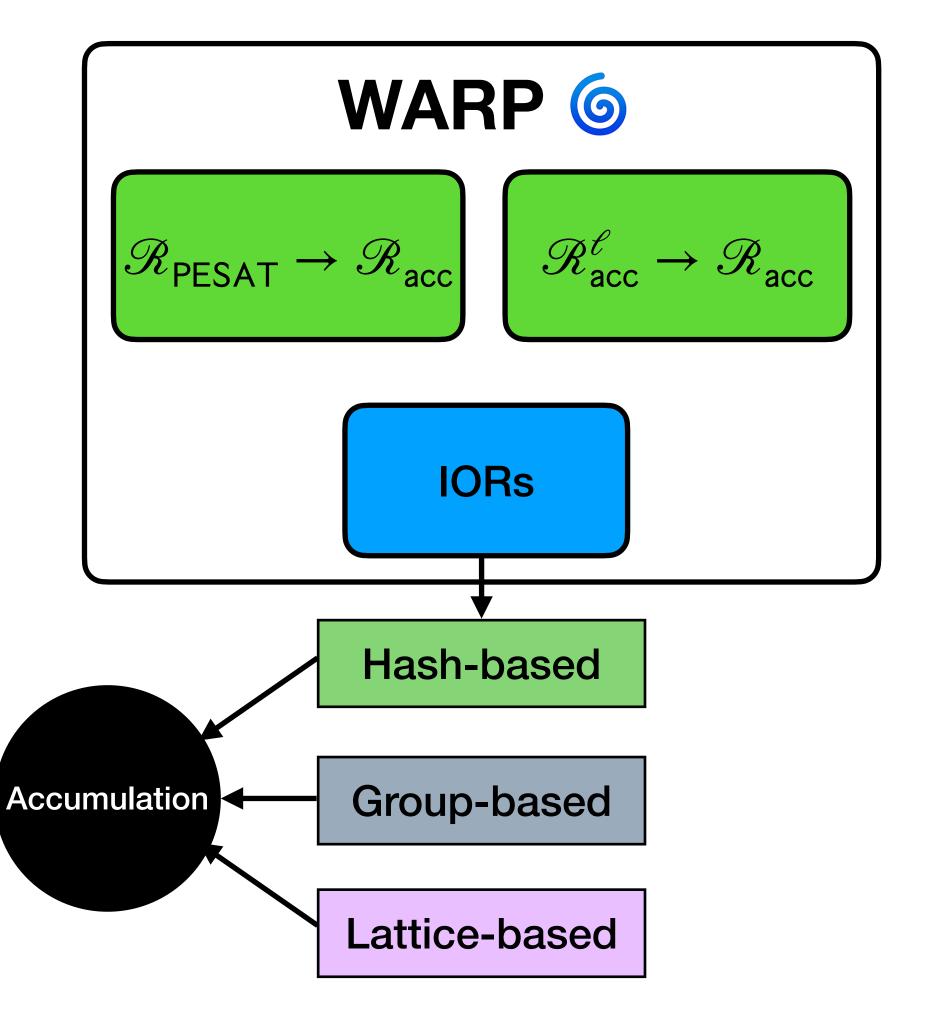
Applications

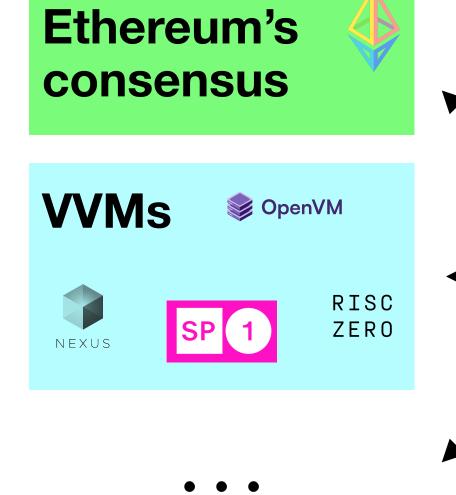
New notions of round-by-round knowledge soundness!

IVC

&

PCD





Thank you!

Extra slides

Polynomial Equation Satisfiability

$$\mathcal{R}_{\mathsf{PESAT}}(\mathbb{F}) = \left\{ \begin{aligned} & i = (\hat{\mathbf{p}}, M, N, k) \\ & x \in \mathbb{F}^{N-k} \\ & w \in \mathbb{F}^k \\ \forall i \in [M] : \hat{\mathbf{p}}_i(x, w) = 0 \end{aligned} \right\}$$

Polynomial over \mathbb{F} in N variables.

PESAT generalizes: R1CS, CCS, GR1CS...

e.g. R1CS: for $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{F}^{M \times N}$ and $x \in \mathbb{F}^{N-k}$: $\exists w \in \mathbb{F}^{N-k}$ such that $\mathbf{A} \begin{bmatrix} x \\ w \end{bmatrix} \circ \mathbf{B} \begin{bmatrix} x \\ w \end{bmatrix} = \mathbf{C} \begin{bmatrix} x \\ w \end{bmatrix}$

Define $\hat{\mathbf{p}}_i(\mathbf{Z}) = \langle \mathbf{a}_i, \mathbf{Z} \rangle \cdot \langle \mathbf{b}_i, \mathbf{z} \rangle - \langle \mathbf{c}_i, \mathbf{z} \rangle$. The equivalent PESAT condition becomes:

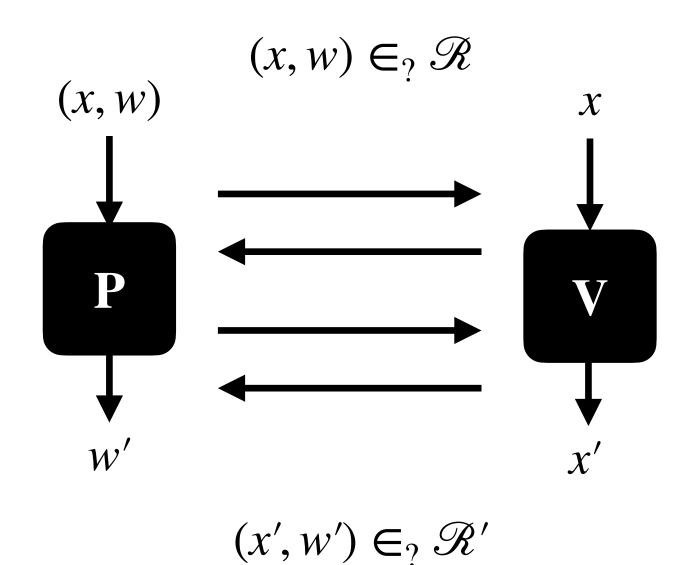
" $\exists w \in \mathbb{F}^{N-k}$ such that $\forall i \in [M] : \hat{\mathbf{p}}_i(x, w) = 0$ "

On Hash-Based Accumulation

Hash-Based Reductions

Interactive reduction

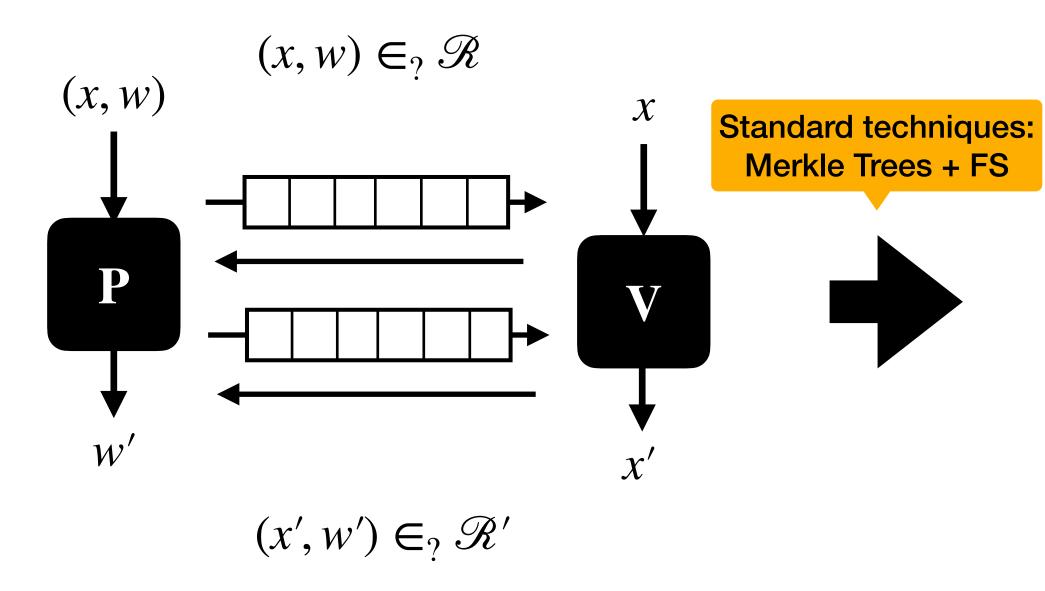
$$\mathcal{R} \to \mathcal{R}'$$



e.g. sumcheck protocol

Typically, want to reduce $\mathscr{R}^\ell o \mathscr{R}$

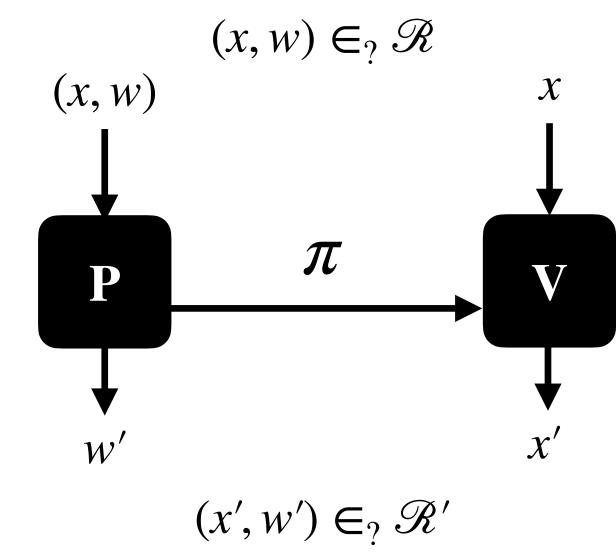
Interactive oracle reduction



Oracles allow for succinct verification

Our focus!

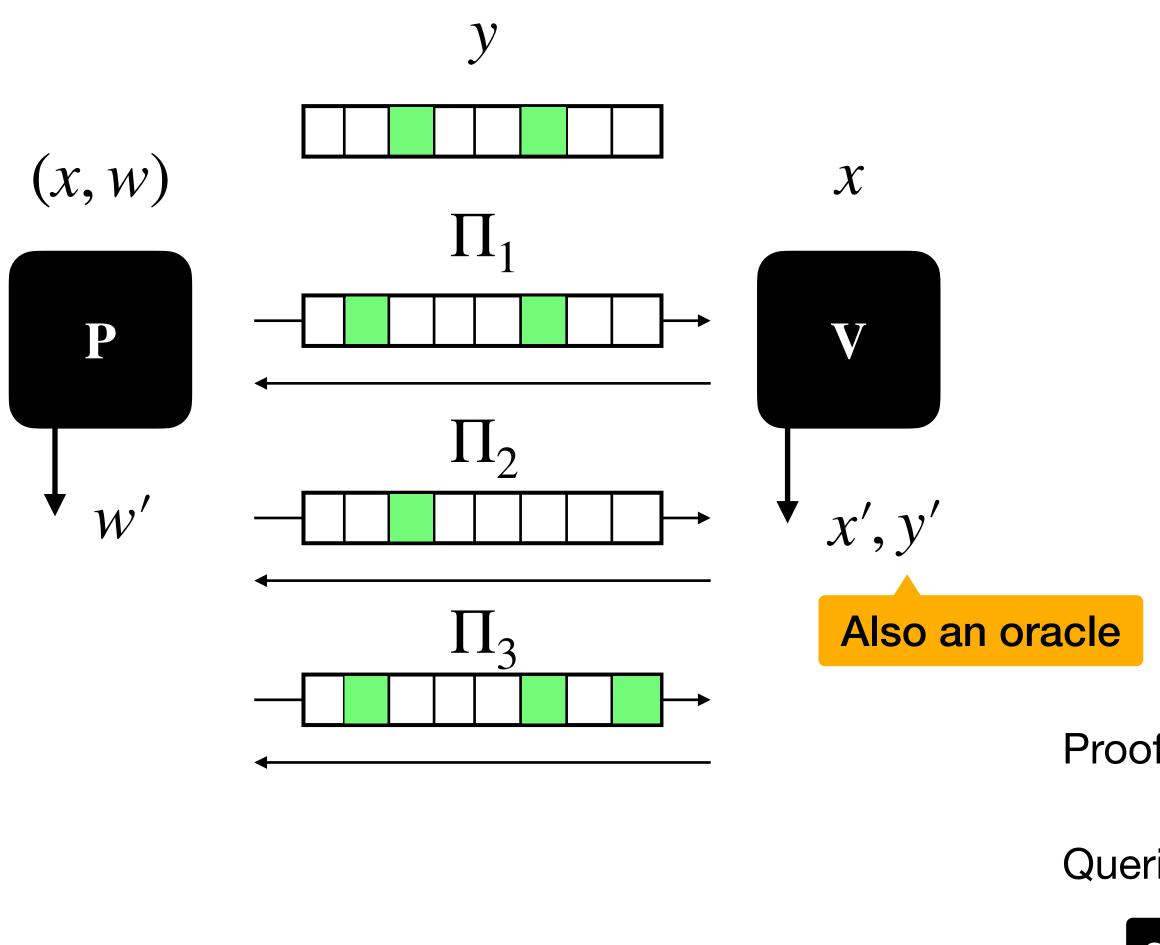
Hash-Based (Non-Interactive) Reduction



Core of hash-based accumulation schemes

IORs of Proximity

IOPP: ARG = IORP: ACC



Completeness

If $(x, y, w) \in R$ then $(x', y', w') \in R$

Soundness

If $\Delta(y, R[x]) > \delta$ then w.h.p. $\Delta(y', R[x']) > \delta'$

Not enough must be knowledge-sound too

Not enough, must be state-restoration sound for FS security

y' can depend on

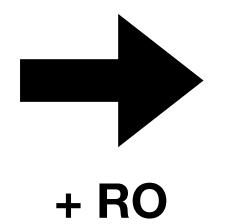
 $(y, \Pi_1, \Pi_2, ...,)$

Large, think 2^{20}

Proof length $I \approx O(k)$

Queries $q \approx O(\lambda)$

Small, think ~100



Prover RO queries O(I)

Verifier RO queries $O(q \cdot log l)$

Accumulation from IORs

PESAT IOR₁

Reduce PESAT to proximity of an (encoded) witness to a relation

$$\mathscr{R}_{\mathsf{PESAT}}(\mathbb{F}) \to \mathscr{R}_{\mathsf{acc}}$$

Batching IORP₂

Batches many instances of accumulation relation into a single one

$$\mathscr{R}^{\ell}_{\mathrm{acc}} o \mathscr{R}_{\mathrm{acc}}$$

Hash-based accumulation constructed by compiling with Merkle Trees and Fiat-Shamir

