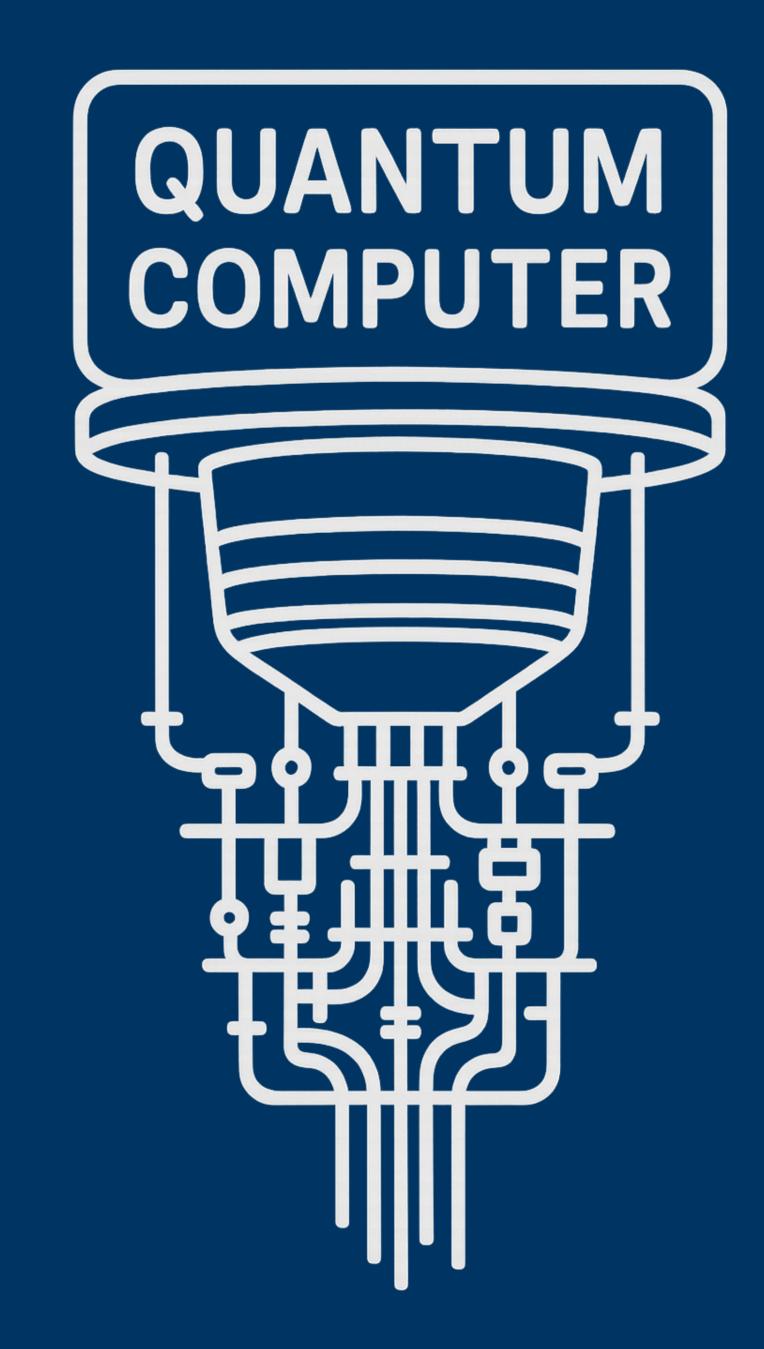
How to Verify that a Small Device is Quantum, Unconditionally

Giulio Malavolta

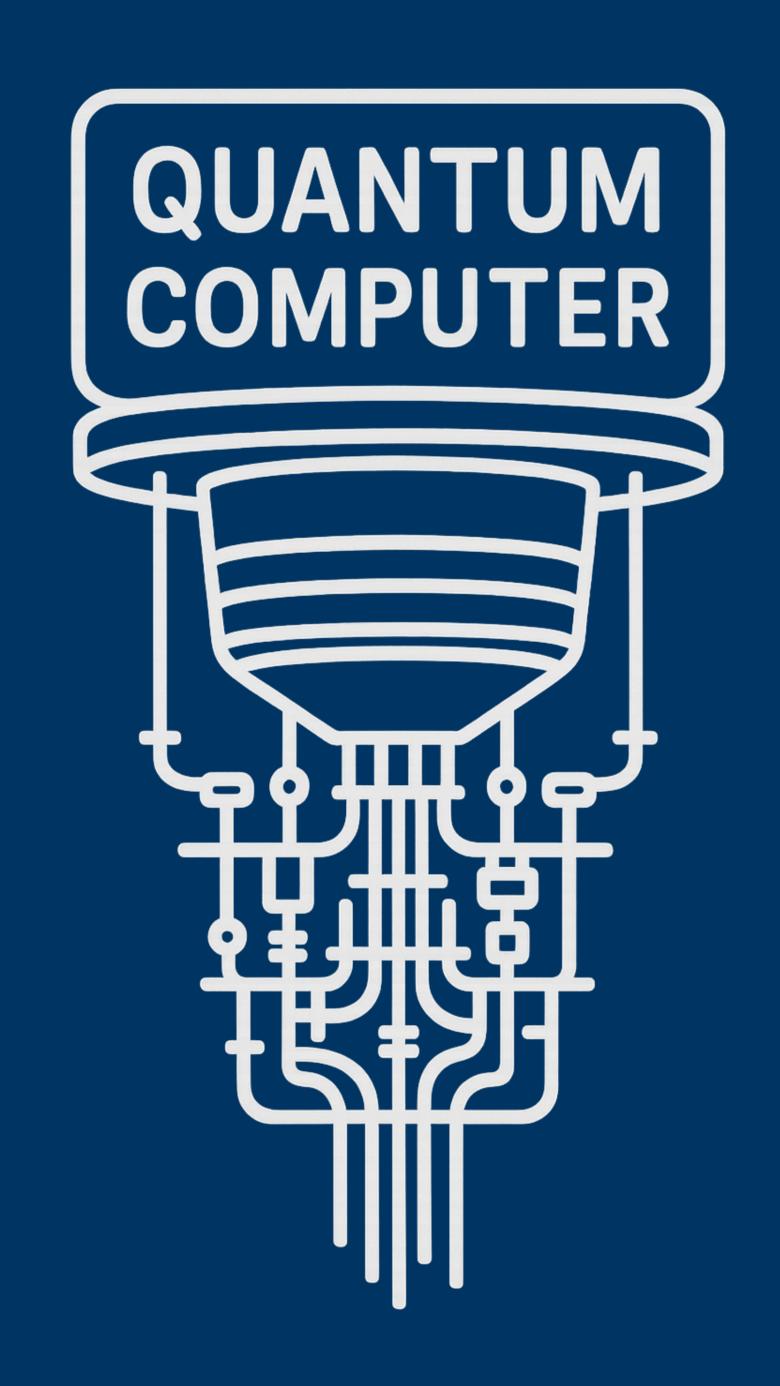
Bocconi University

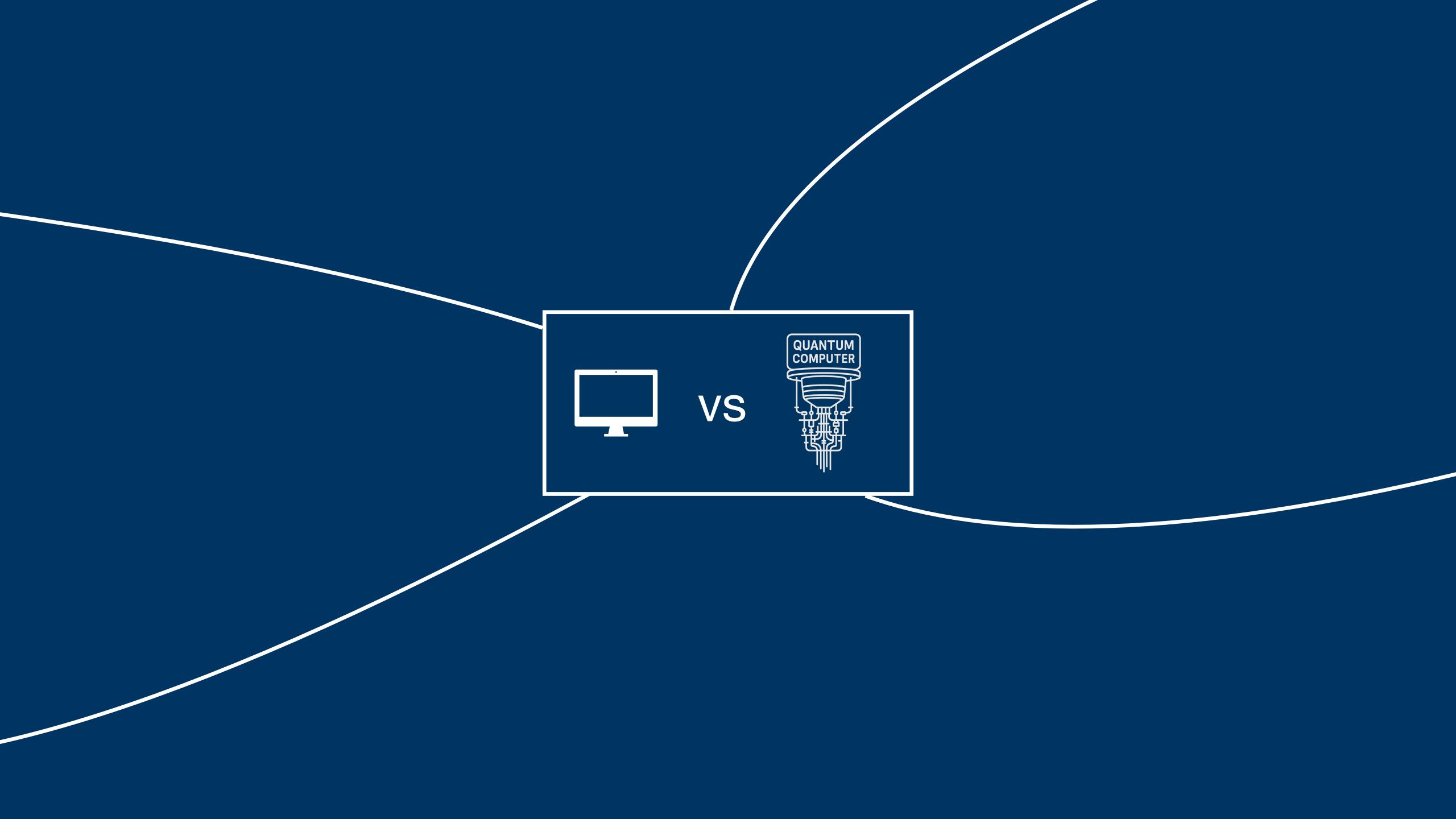
Based on joint work with Tamer Mour

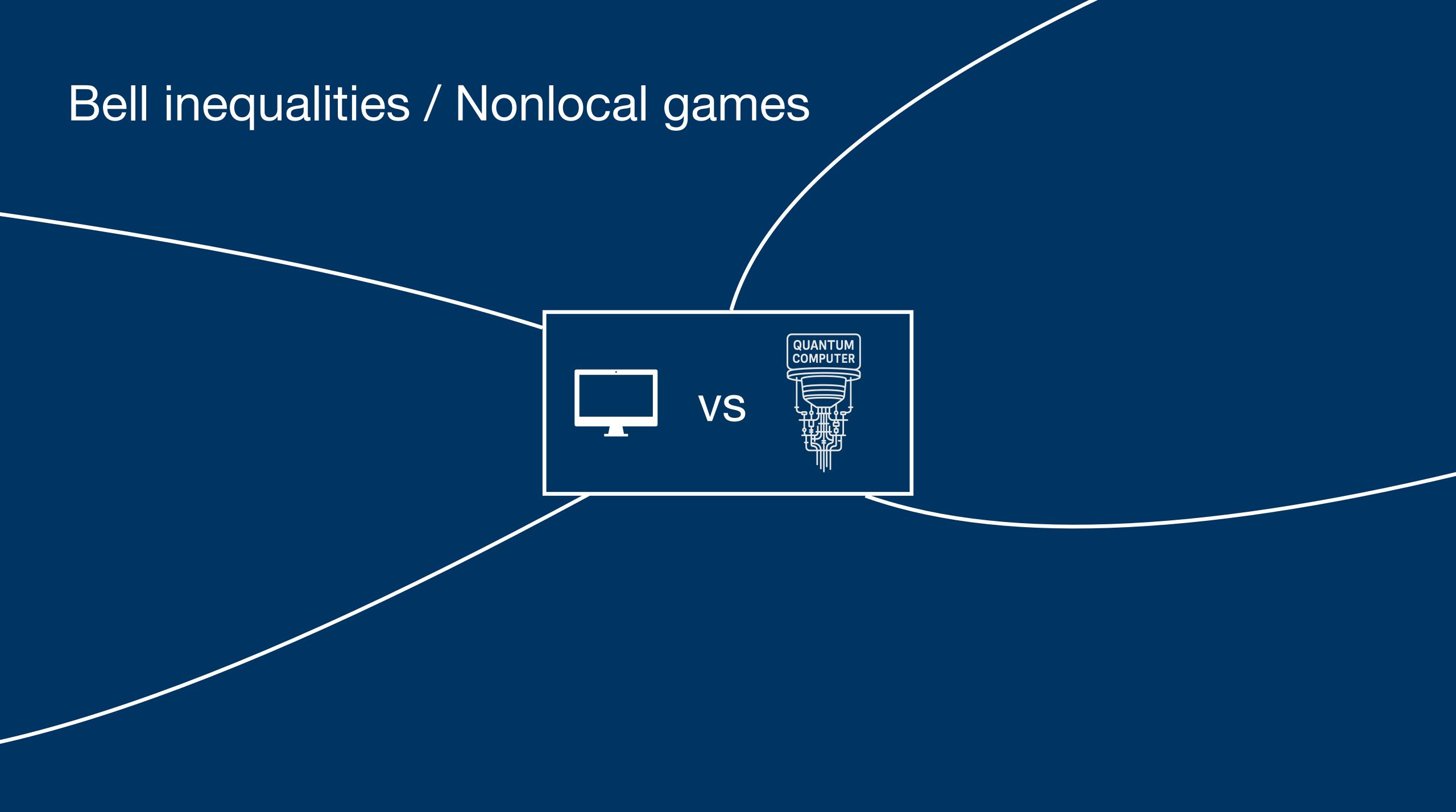


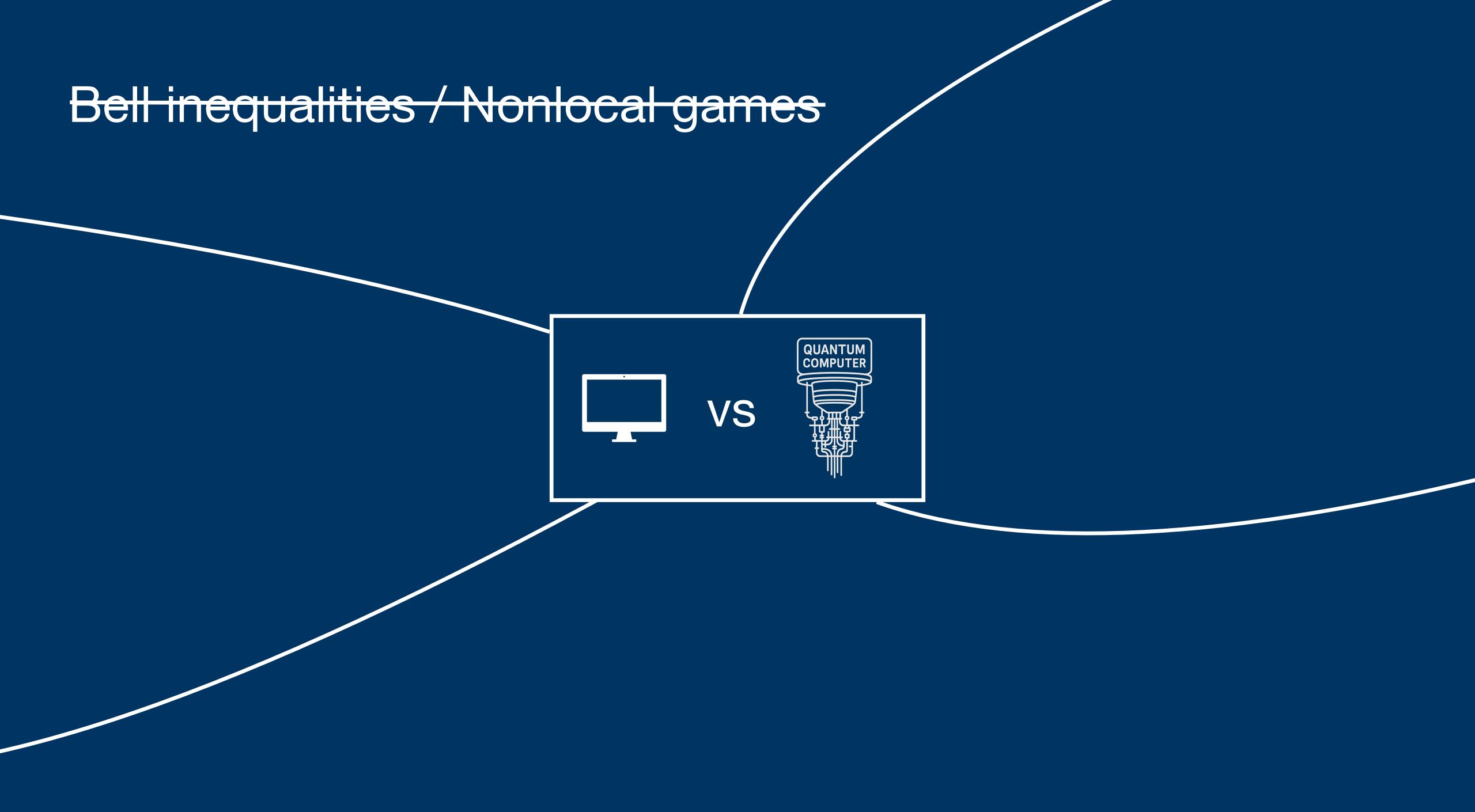
Is my computer really quantum?

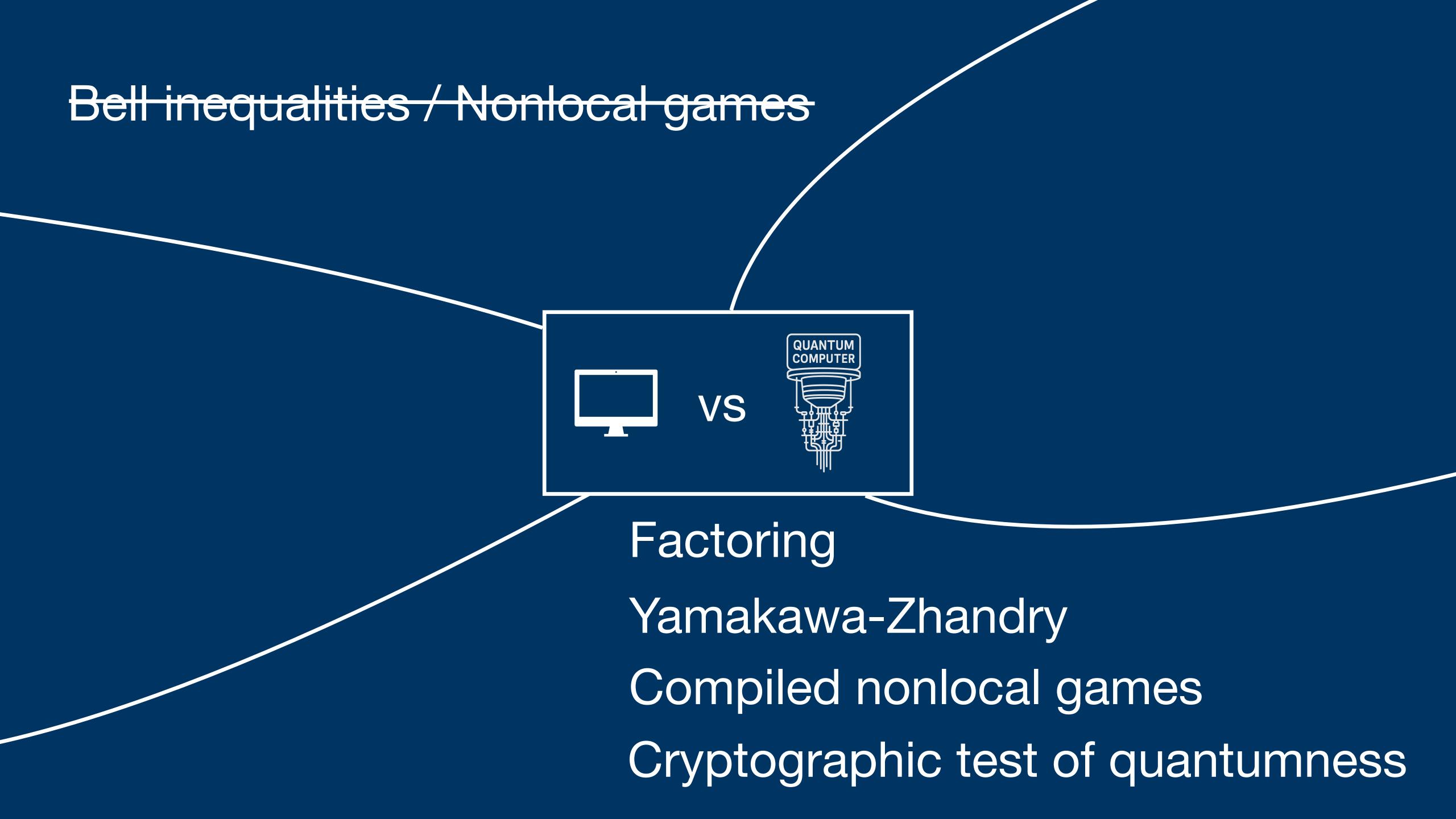
Can my quantum computer calculate something that classical computers cannot?

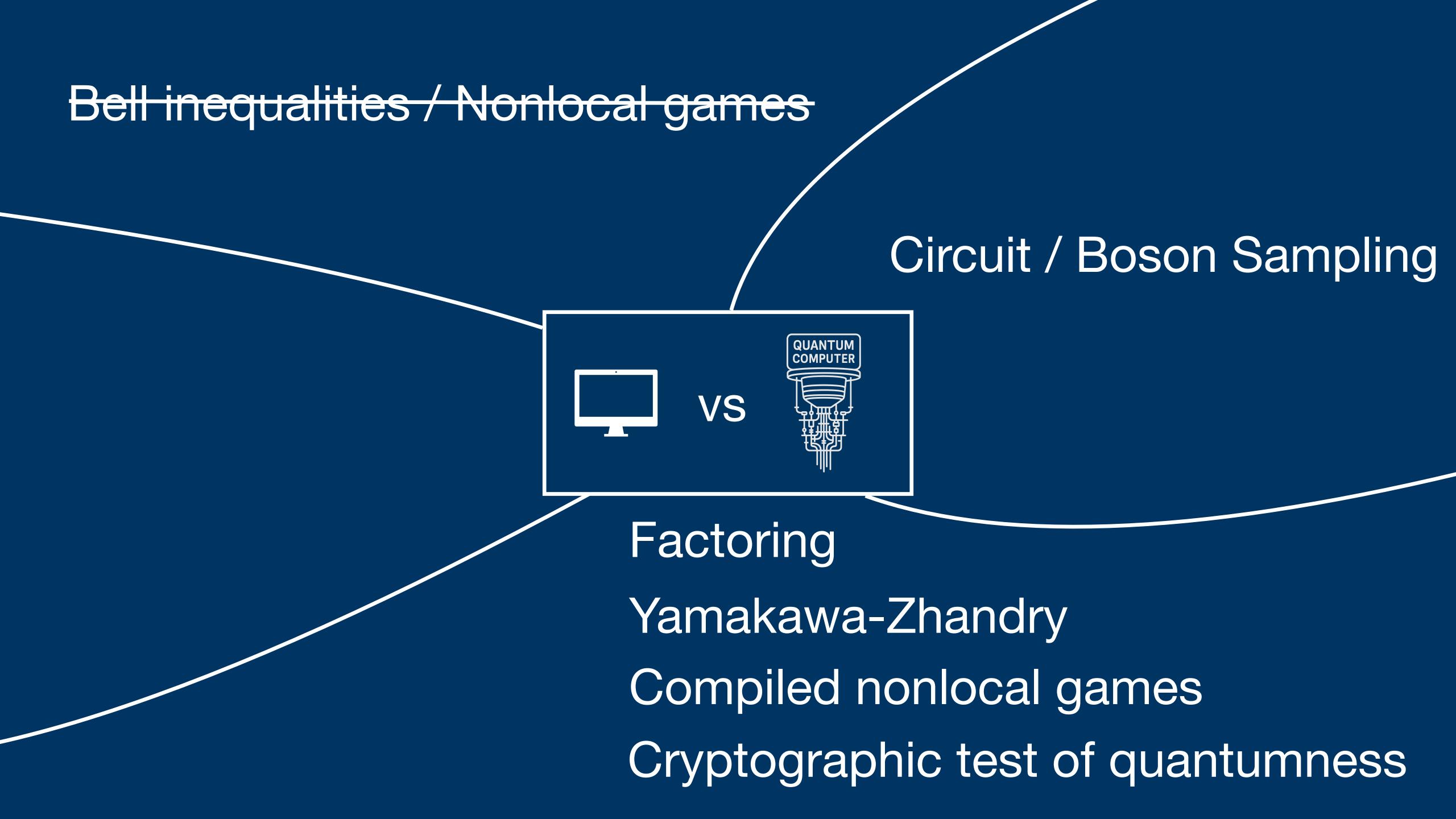


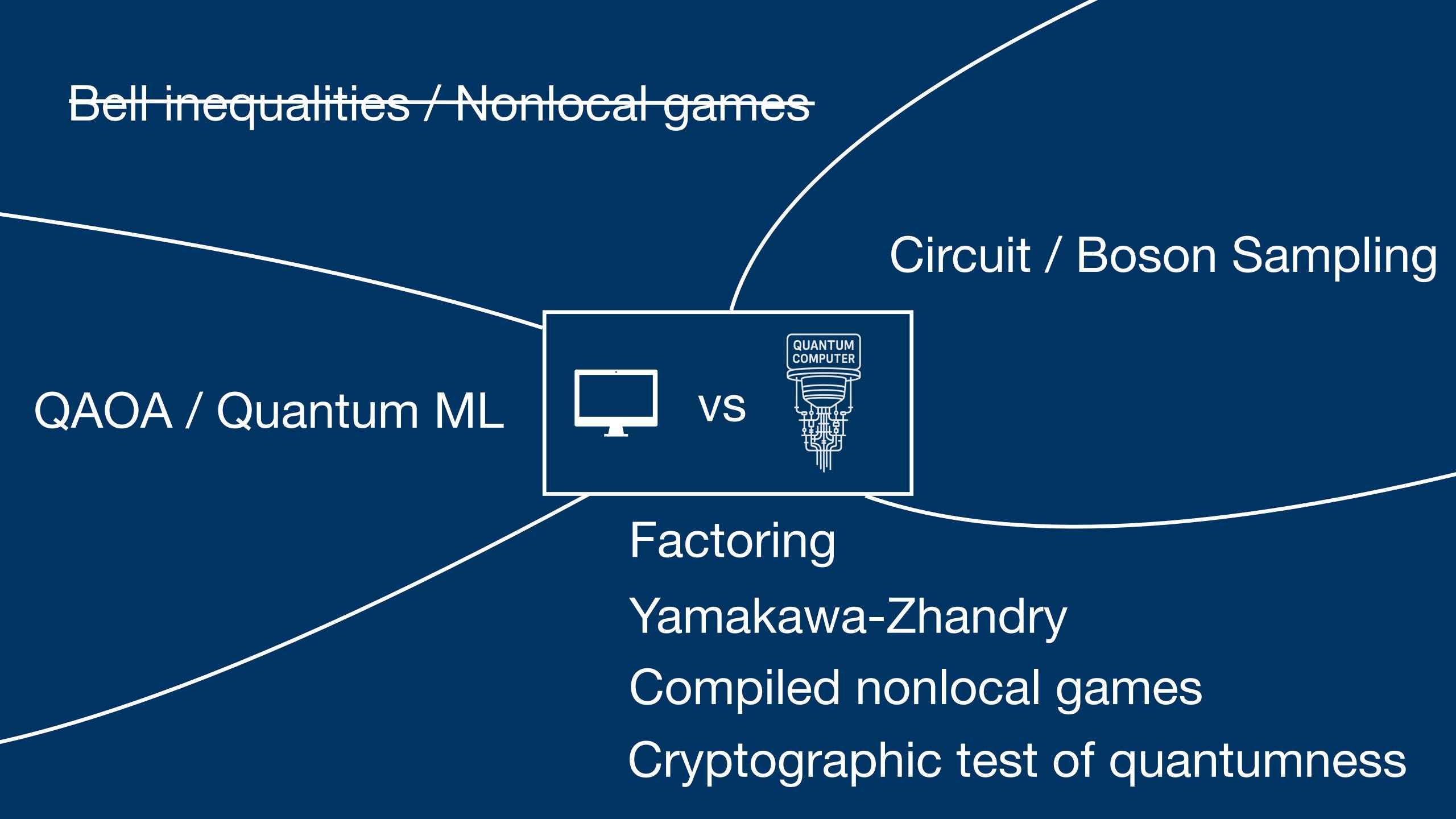












Bell inequalities / Nonlocal games

Circuit / Boson Sampling

QAOA / Quan BIQ P 454 B D D

Factoring

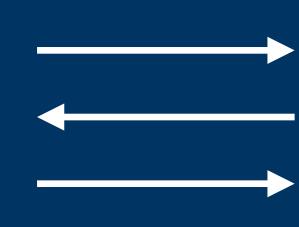
Yamakawa-Zhandry

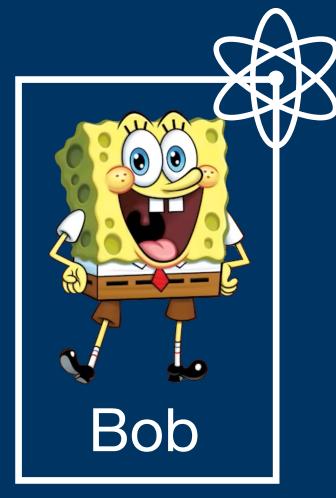
Compiled nonlocal games

Cryptographic test of quantumness

IDEA: CONSTRAIN SPACE INSTEAD OF TIME

QUANTUM EASY

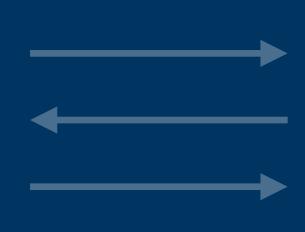




YES!

Efficiency: Memory of Alice and Bob o(N)Runtime of Alice and Bob O(N)

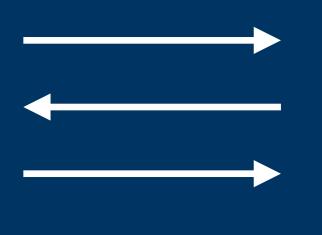
QUANTUM EASY

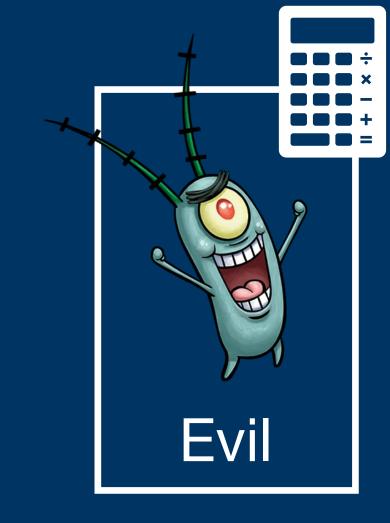


YES

Efficiency: Memory of Alice and Bob o(N)Runtime of Alice and Bob O(N)

CLASSICAL HARD





NO!

Soundness: Unconditional against *classical* attackers with o(N)-bits of memory

Proof of quantumness (PoQ) complete with O(n) memory and sound against classical attackers with $o(n^2)$ memory

Proof of quantumness (PoQ) complete with O(n) memory and sound against classical attackers with $o(n^2)$ memory

THEOREM 2:

PoQ complete with $O(\text{poly} \log n)$ memory and sound against classical attackers with o(n) memory

Proof of quantumness (PoQ) complete with O(n) memory and sound against classical attackers with $o(n^2)$ memory

THEOREM 2:

PoQ complete with $O(\text{poly} \log n)$ memory and sound against classical attackers with o(n) memory

THEOREM 3:

BQP verification against memory-bounded quantum attackers

Proof of quantumness (PoQ) complete with O(n) memory and sound against classical attackers with $o(n^2)$ memory

THEOREM 2:

PoQ complete with O(poly log n) memory and sound against classical attackers with o(n) memory

THEOREM 3:

BQP verification against memory-bounded *quantum* attackers

 $s \sim \mathbb{F}_2^n$

$$s \sim \mathbb{F}_2^n$$

$$a_1 \sim \mathbb{F}_2^n$$

$$a_1, \langle a_1, s \rangle$$

$$s \sim \mathbb{F}_2^n$$

$$a_1 \sim \mathbb{F}_2^n$$

$$a_1, \langle a_1, s \rangle$$

$$s \sim \mathbb{F}_2^n$$

$$a_1 \sim \mathbb{F}_2^n$$

•

$$a_i \sim \mathbb{F}_2^n$$

$$a_1, \langle a_1, s \rangle$$

$$a_i, \langle a_i, s \rangle$$

$$s \sim \mathbb{F}_2^n$$

$$a_1 \sim \mathbb{F}_2^n$$

$$a_i \sim \mathbb{F}_2^n$$

$$a_1, \langle a_1, s \rangle$$

$$a_i, \langle a_i, s \rangle$$

Objective: Find s

$$s \sim \mathbb{F}_2^n$$

Classical Hardness: [Raz'18]

$$a_1 \sim \mathbb{F}_2^n$$

$$a_i \sim \mathbb{F}_2^n$$

$$a_1, \langle a_1, s \rangle$$

$$a_i$$
, $\langle a_i, s \rangle$

Objective: Find s

$$s \sim \mathbb{F}_2^n$$

$$a_1 \sim \mathbb{F}_2^n$$

•

$$a_i \sim \mathbb{F}_2^n$$

Classical Hardness: [Raz'18]

Quantum Easy: ???

$$a_1, \langle a_1, s \rangle$$

$$a_i, \langle a_i, s \rangle$$

Objective: Find s

$$\left\{\frac{|x_0\rangle + |x_1\rangle}{\sqrt{2}}\right\}_{x_0, x_1}$$

$$\left\{\frac{|x_0\rangle + |x_1\rangle}{\sqrt{2}}\right\}_{x_0, x_1}$$

Completeness: It is easy to obtain a copy of such state

$$\left\{\frac{|x_0\rangle + |x_1\rangle}{\sqrt{2}}\right\}_{x_0,x_1}$$

Completeness: It is easy to obtain a copy of such state

Claw-Freeness: It is hard to output both x_0 and x_1

$$|x_0\rangle + |x_1\rangle$$

 $r \sim \mathcal{U}$

 $|x_0\rangle + |x_1\rangle$

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

$$r \sim \mathcal{U}$$

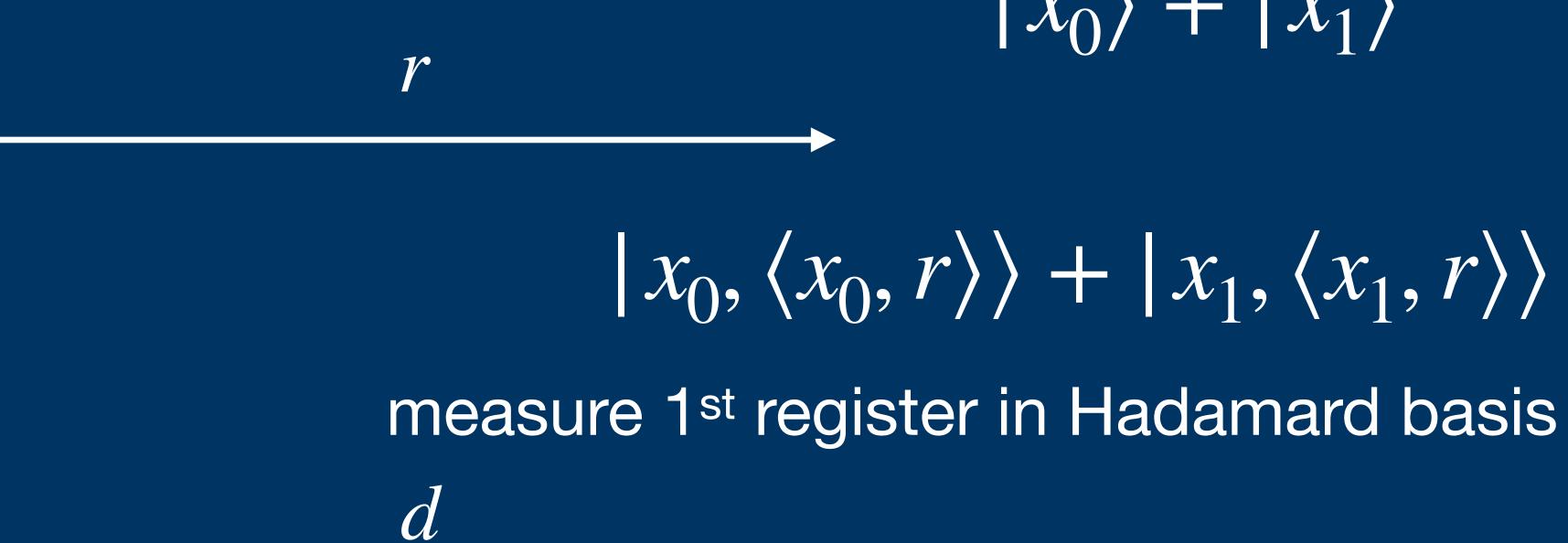
$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

measure 1st register in Hadamard basis

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$



$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

 \mathcal{A}

CHSH Test

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

d

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

 \boldsymbol{a}

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$

$$\theta$$

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

d

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$

 θ

measure in the basis $\{\cos\theta \,|\, 0\rangle + \sin\theta \,|\, 1\rangle, \cos\theta \,|\, 0\rangle - \sin\theta \,|\, 1\rangle\}$

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

 \boldsymbol{a}

$$\theta \sim \{-\pi/8, +\pi/8\}$$

 θ

measure in the basis

$$\{\cos\theta\,|\,0\rangle + \sin\theta\,|\,1\rangle, \cos\theta\,|\,0\rangle - \sin\theta\,|\,1\rangle\}$$

$$r \sim \mathcal{U}$$

$$|x_0\rangle + |x_1\rangle$$

$$|x_0,\langle x_0,r\rangle\rangle + |x_1,\langle x_1,r\rangle\rangle$$

 \boldsymbol{d}

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$

 θ

measure in the basis

$$\{\cos\theta | 0\} + \sin\theta | 1\}, \cos\theta | 0\} - \sin\theta | 1\}$$

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$
 measure in the basis
$$\{\cos\theta \,|\, 0\rangle + \sin\theta \,|\, 1\rangle, \cos\theta \,|\, 0\rangle - \sin\theta \,|\, 1\rangle\}$$

Accept if the most likely outcome

A quantum prover succeeds with probability $\cos^2 \pi/8 \approx 0.853$

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$
 measure in the basis
$$\{\cos\theta \,|\, 0\rangle + \sin\theta \,|\, 1\rangle, \cos\theta \,|\, 0\rangle - \sin\theta \,|\, 1\rangle\}$$

Accept if the most likely outcome

A quantum prover succeeds with probability $\cos^2 \pi/8 \approx 0.853$

A classical prover can be used to extract a claw

CHSH Test

$$\theta \sim \{-\pi/8, +\pi/8\}$$
 measure in the basis
$$\{\cos\theta \,|\, 0\rangle + \sin\theta \,|\, 1\rangle, \cos\theta \,|\, 0\rangle - \sin\theta \,|\, 1\rangle\}$$

Accept if the most likely outcome

NEXT: UNCONDITIONAL CLAW GENERATION

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$x$$

$$\sum |x, xV\rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum |x, xV\rangle \quad V \in \mathbb{F}_2^{n+1 \times n+1}$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$x$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$\ker(V) = \{0, (s, -1)\}$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$\ker(V) = \{0, (s, -1)\}$$

$$\sum_{x:xV=y} |x,y\rangle = |x_0,y\rangle + |x_1,y\rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$\ker(V) = \{0, (s, -1)\}$$

$$\sum_{x:xV=y} |x,y\rangle = |x_0,y\rangle + |x_1,y\rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$

Requires only O(n) qubits

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$\ker(V) = \{0, (s, -1)\}$$

$$\sum_{x:xV=y} |x,y\rangle = |x_0,y\rangle + |x_1,y\rangle$$

$$v_i = (a_i, \langle a_i, s \rangle)$$
:

Requires only
$$O(n)$$
 qubits

Finding a claw implies learning s

$$x_0 = x_1 + (s, -1)$$

$$\sum_{x} |x\rangle$$

$$\vdots$$

$$\sum_{x} |x, \langle x, v_1 \rangle, \dots, \langle x, v_i \rangle \rangle$$

$$\sum_{x} |x, xV\rangle \quad V \in \mathbb{F}_{2}^{n+1 \times n+1}$$

$$\operatorname{rank}(V) = n$$

$$ker(V) = \{0, (s, -1)\}$$

$$\sum_{x:xV=y} |x,y\rangle = |x_0,y\rangle + |x_1,y\rangle$$

1. Learning Parities with Quantum Memory

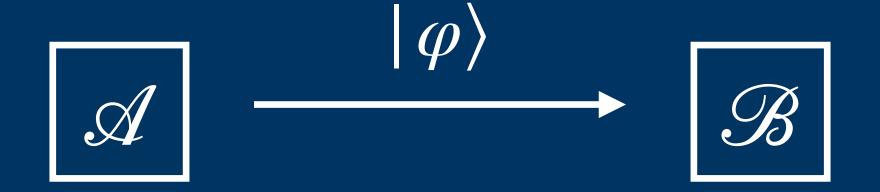
1. Learning Parities with Quantum Memory Possible to get a Grover-like advantage

1. Learning Parities with Quantum Memory Possible to get a Grover-like advantage

2. Communication Complexity

1. Learning Parities with Quantum Memory Possible to get a Grover-like advantage

2. Communication Complexity



1. Learning Parities with Quantum Memory Possible to get a Grover-like advantage

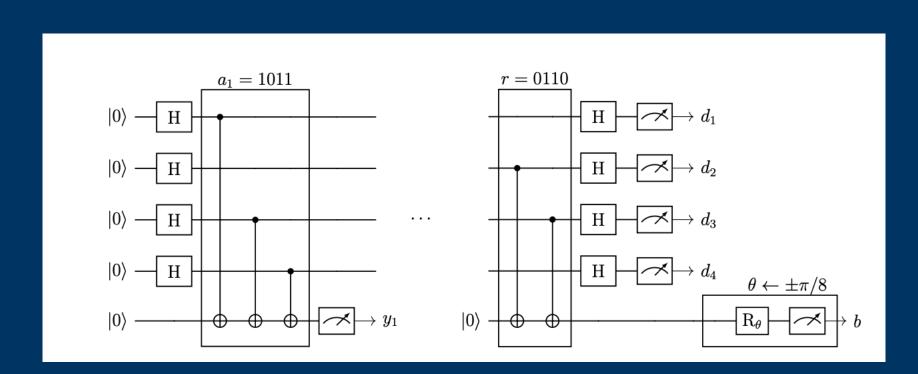
2. Communication Complexity

3. Experiments!

1. Learning Parities with Quantum Memory Possible to get a Grover-like advantage

2. Communication Complexity

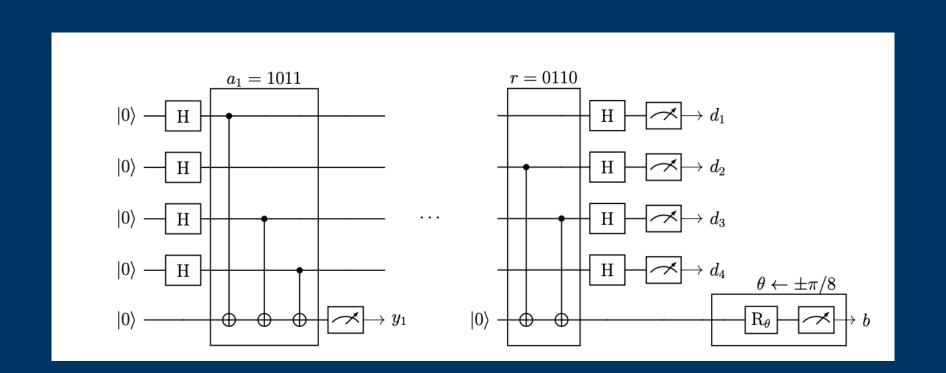
3. Experiments!



 Learning Parities with Quantum Memory Possible to get a Grover-like advantage

2. Communication Complexity

3. Experiments!



THANK YOU!

https://arxiv.org/abs/2505.23978

THEOREM 1:

Proof of quantumness (PoQ) complete with O(n) memory and sound against classical attackers with $o(n^2)$ memory

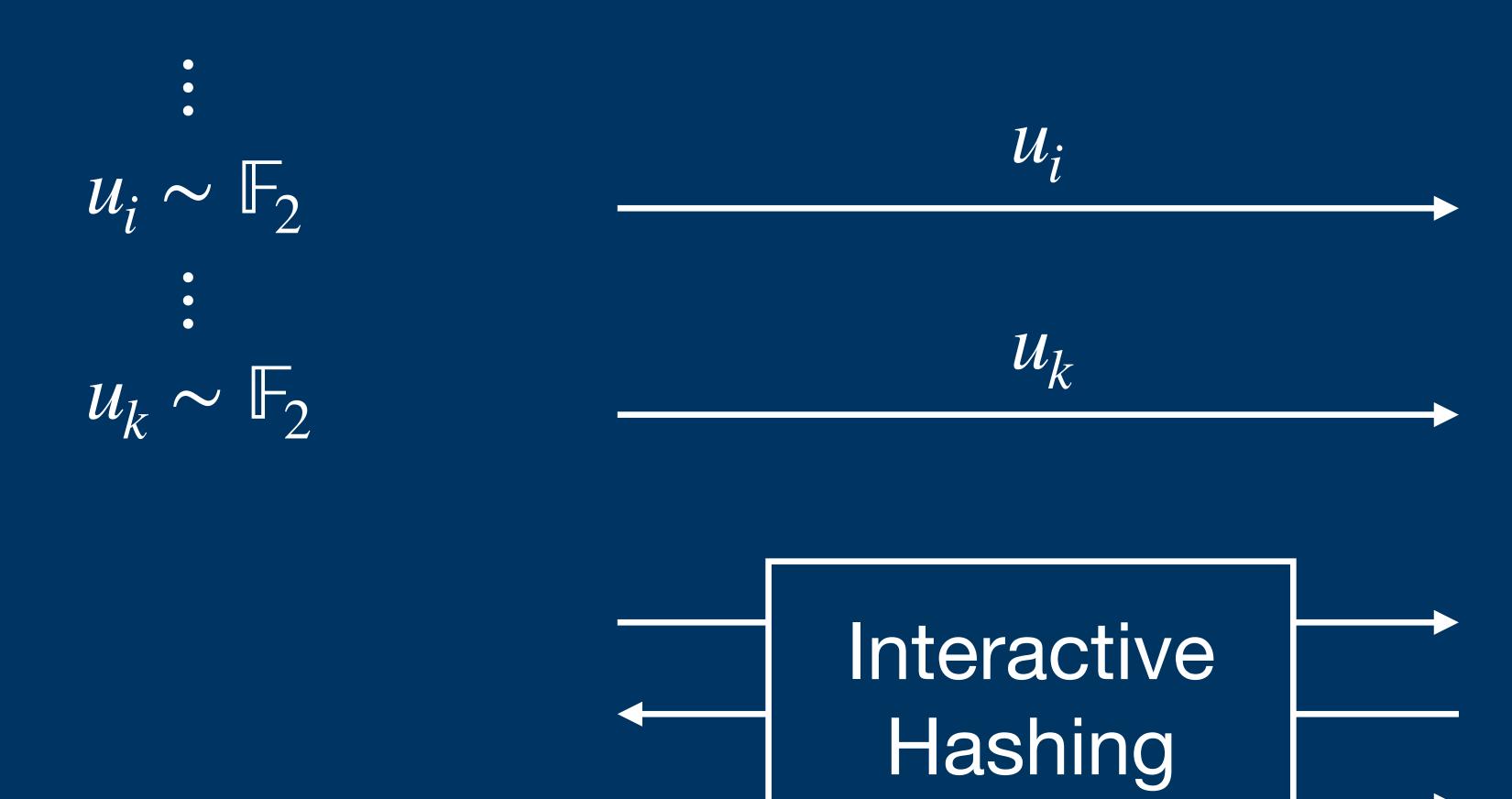
THEOREM 2:

PoQ complete with O(poly log n) memory and sound against classical attackers with o(n) memory

THEOREM 3:

BQP verification against memory-bounded quantum attackers

 $\vdots \\ u_i \sim \mathbb{F}_2 \qquad \qquad u_i$



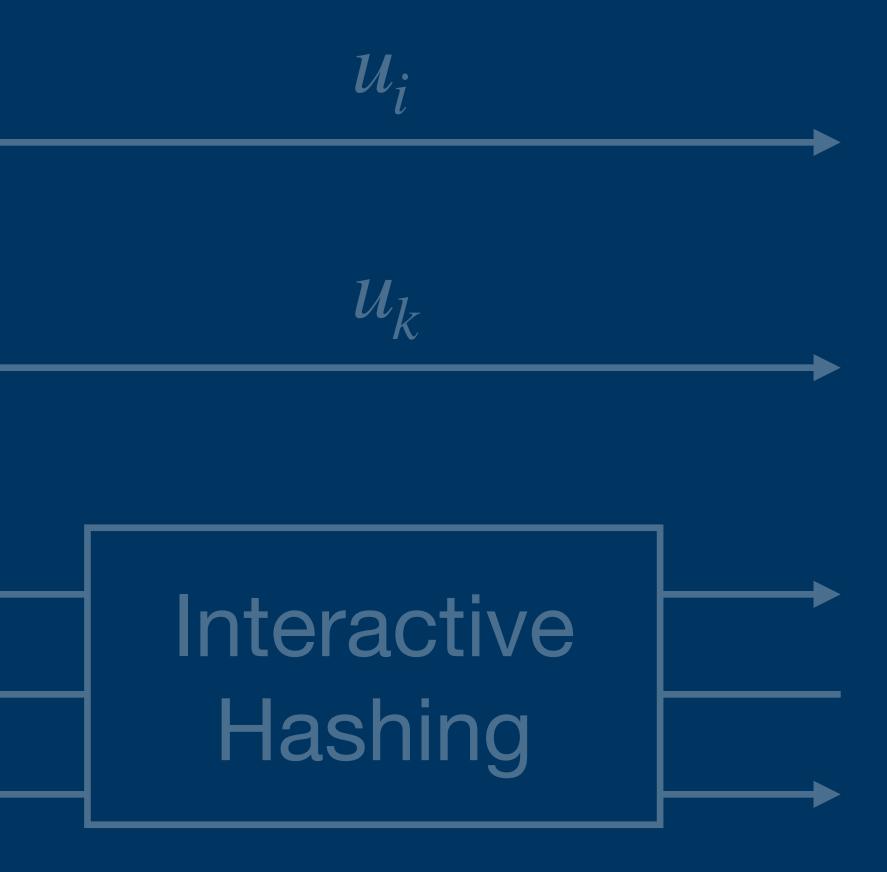
$$\begin{array}{c} \vdots \\ u_i \sim \mathbb{F}_2 \\ \vdots \\ u_k \sim \mathbb{F}_2 \end{array} \qquad \begin{array}{c} u_i \\ \\ u_k \end{array}$$

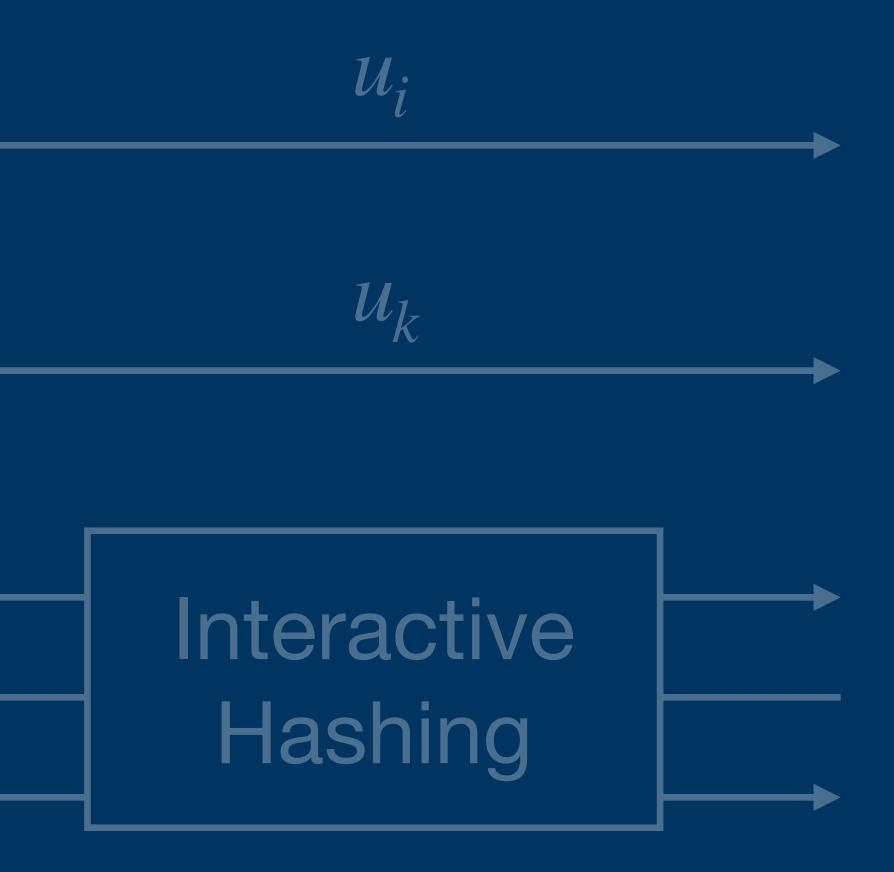
$$y: h^{-1}(y) = \{v_0, v_1\} \in [k]$$

$$\begin{array}{c} \vdots \\ u_i \sim \mathbb{F}_2 \\ \vdots \\ u_k \sim \mathbb{F}_2 \end{array} \qquad \begin{array}{c} u_i \\ \\ u_k \end{array}$$

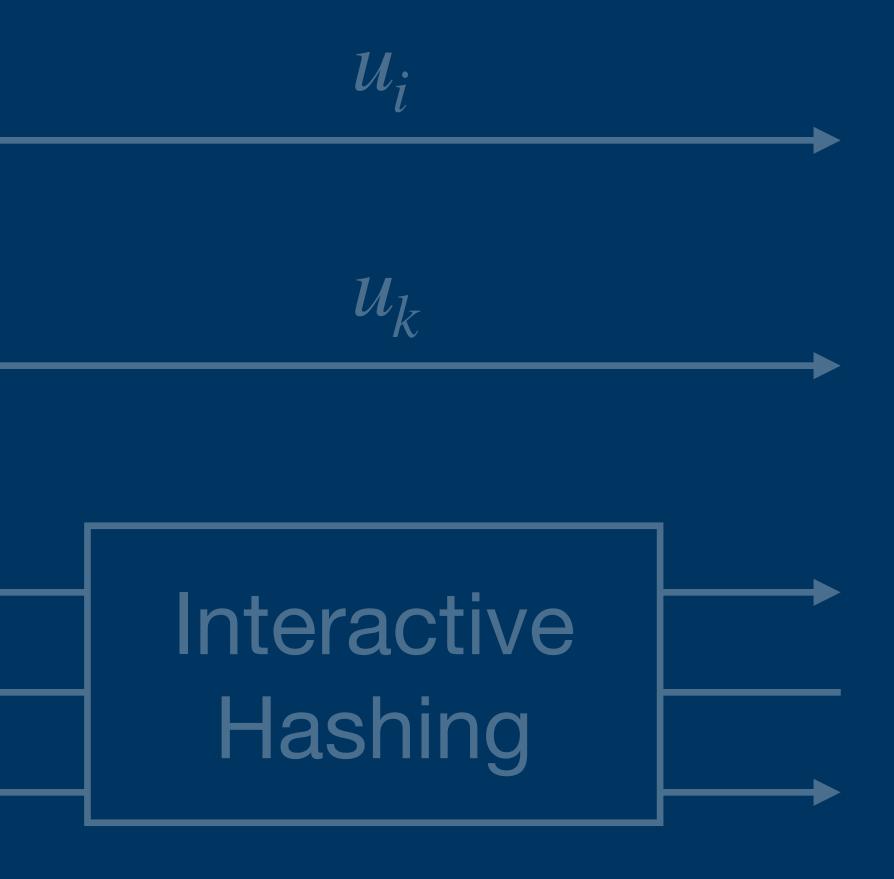
$$y: h^{-1}(y) = \{v_0, v_1\} \in [k]$$

Abort if
$$\{v_0, v_1\} \neq \{v_0^*, v_1^*\}$$



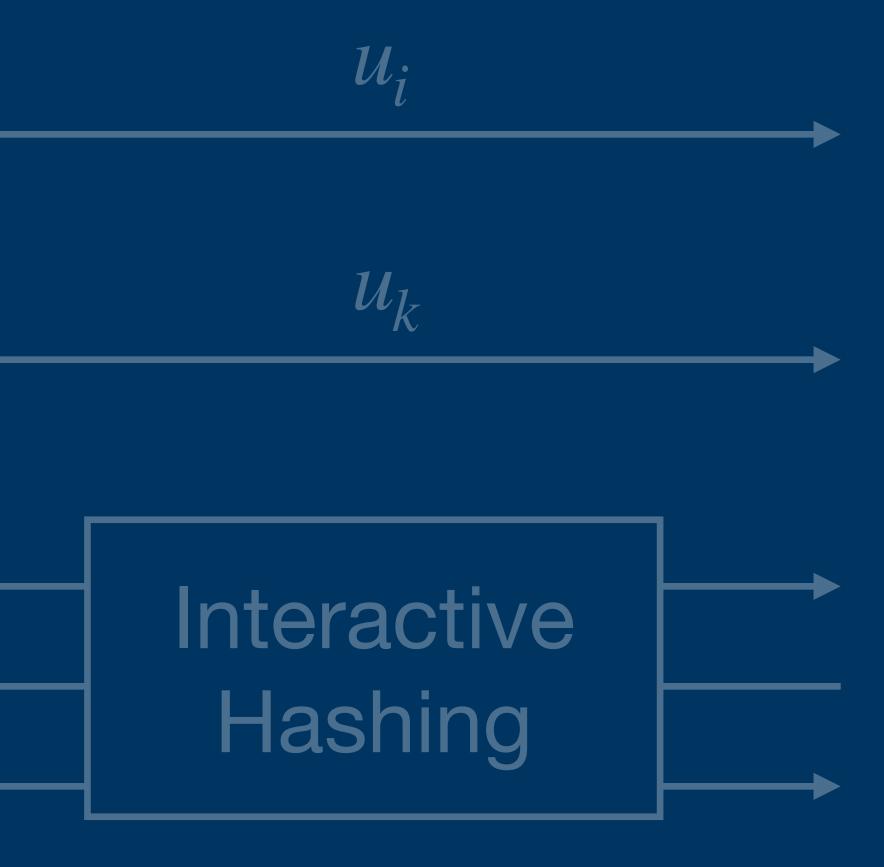


$$\frac{\sum}{v} |v\rangle$$



$$\frac{1}{v}$$

$$\langle v, u_v \rangle$$



$$\sum_{v} |v\rangle$$

$$\sum_{v} |v, u_{v}\rangle$$

$$|v_0, u_{v_0}\rangle + |v_1, u_{v_1}\rangle$$

$$\begin{array}{c} u_{i} \\ \\ u_{k} \\ \\ \end{array} \qquad \begin{array}{c} \sum_{v} |v\rangle \\ \\ \sum_{v} |v,u_{v}\rangle \\ \\ |v_{0},u_{v_{0}}\rangle + |v_{1},u_{v_{1}}\rangle \\ \\ \text{Hashing} \end{array}$$

The bits u_{v_0} and u_{v_1} are hard to guess!

CLAW-STITCHING

$$\left(|v_{0}, u_{v_{0}}\rangle + |v_{1}, u_{v_{1}}\rangle \right) \otimes \left(|w_{0}, u_{w_{0}}\rangle + |w_{1}, u_{w_{1}}\rangle \right)$$

$$\neq$$

$$|v_{0}, u_{v_{0}}, w_{0}, u_{w_{0}}\rangle + |v_{1}, u_{v_{1}}, w_{1}, u_{w_{1}}\rangle$$

CLAW-STITCHING

$$\left(|v_{0}, u_{v_{0}}\rangle + |v_{1}, u_{v_{1}}\rangle \right) \otimes \left(|w_{0}, u_{w_{0}}\rangle + |w_{1}, u_{w_{1}}\rangle \right)$$

$$\neq$$

$$|v_{0}, u_{v_{0}}, w_{0}, u_{w_{0}}\rangle + |v_{1}, u_{v_{1}}, w_{1}, u_{w_{1}}\rangle$$

Solution: Entangle by measuring the XOR of the bits