

PRISMO

A Quaternion Signature for Supersingular Isogeny Group Actions

Tako Boris Fouotsa, EPFL

Swiss Crypto Day 2025 - Halloween Edition

31st October 2025

Outline

Motivation

Supersingular isogenies and endomorphisms

PRISM*

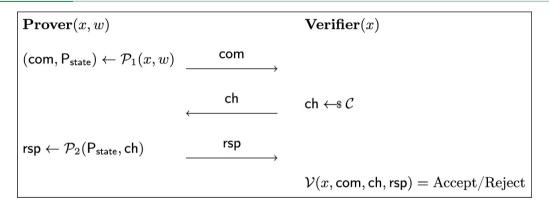
 PRISMO^*



Sigma protocols

$$\mathcal{L} = \{ (x, w) \}$$
 arising from a hard relation

Sigma protocols



Completeness: V accepts when P knows a witness and they follow the protocol. Special Soundness: $w \leftarrow \mathsf{extract}(x, (com, ch, rsp), (com, ch', rsp')), ch \neq ch'$. Special HVZK: given ch, $(com, ch, rsp) \leftarrow \mathsf{simulate}(x, ch)$ that is valid.

Sigma protocols (2)

A dishonest P can always fool V with probability at least $1/\#\mathcal{C}$.

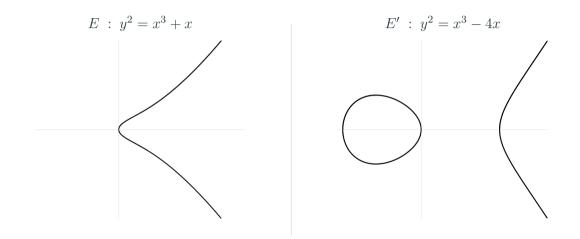
- $\#\mathcal{C} = O(\text{poly}(\lambda))$ (2 for example), $1/\#\mathcal{C}$ is not negligible, not great!
 - Solution: repeat the sigma protocol several times.
 - Consequence: huge efficiency/size overhead.
 - \star The case for CSI-FiSh (isogeny group action signature).
- $\#\mathcal{C} = O(\exp(\lambda))$, $1/\#\mathcal{C}$ is negligible, great!
 - ★ The case for SQIsign and PRISM

Question: Can we adapt PRISM to the isogeny group action setting?

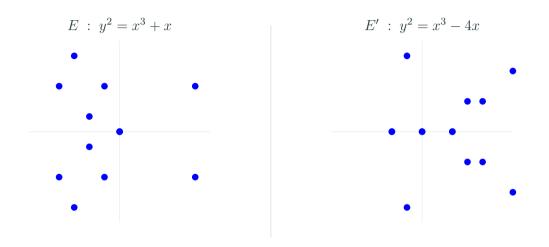
 $[\]lambda$ is the security parameter; $\;\;$ PRISM is a hash and sign signature instead.

Supersingular isogenies and endomorphisms

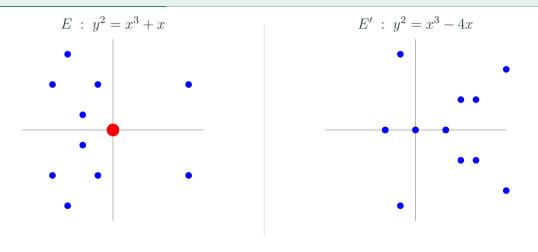
Elliptic curves



Elliptic curves

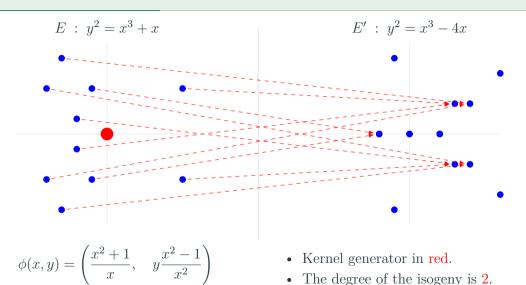


Isogenies



Credits: Luca De Feo

Isogenies



6/18

Isogeny computation

Degree ℓ isogeny where $\ell > 2$ is a prime, Impractical for large primes.

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Degree ℓ^n isogeny

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right) \circ \dots \circ \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Isogeny computation

Degree ℓ isogeny where $\ell > 2$ is a prime, Impractical for large primes.

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Degree ℓ^n isogeny

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right) \circ \dots \circ \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Isogeny computation

Degree ℓ isogeny where $\ell > 2$ is a prime, Impractical for large primes.

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Degree ℓ^n isogeny

$$\phi(P) = \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right) \circ \dots \circ \left(\frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^2}, y \cdot \frac{x^{\ell} + \dots}{(x^{(\ell-1)/2} + \dots)^3}\right)$$

Ordinary/supersingular curves

For n coprime to the field characteristic

$$E[n] = \langle P, Q \rangle \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}.$$

Ordinary curves

- $E[p] = \langle P \rangle \simeq \mathbb{Z}/p\mathbb{Z}$
- $\operatorname{End}(E)$ has rank 2, is commutative

Supersingular curves:

- $E[p] = \{\infty\}$
- $\operatorname{End}(E)$ has rank 4, is not commutative

Ordinary/supersingular curves

For n coprime to the field characteristic

$$E[n] = \langle P, Q \rangle \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}.$$

Ordinary curves

- $E[p] = \langle P \rangle \simeq \mathbb{Z}/p\mathbb{Z}$
- $\operatorname{End}(E)$ has rank 2, is commutative

Supersingular curves:

- $E[p] = \{\infty\}$
- $\operatorname{End}(E)$ has rank 4, is not commutative
- Allow more efficient protocols

Prime degree isogeny problem

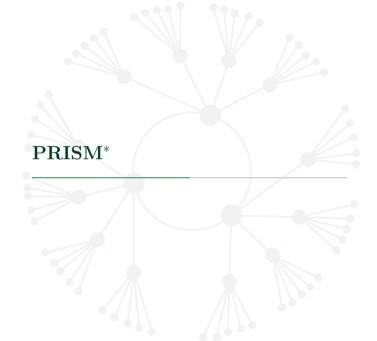
Prime degree isogeny problem

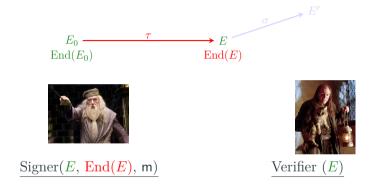
Given a random supersingular elliptic curve E and a large prime q, compute an isogeny $\phi: E \to E'$ of degree q.

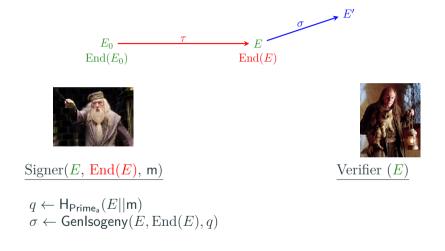
Easy when one knows one the following:

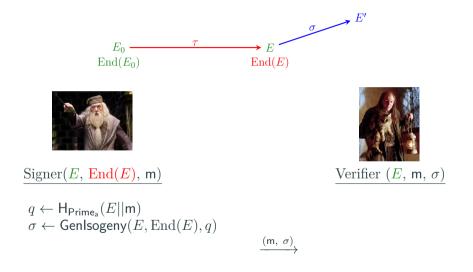
- the endomorphism ring $\operatorname{End}(E)$ of E [something called Deuring correspondence]
- a non scalar endomorphism $\theta \in \operatorname{End}(E)$ which fixes a group $\langle P \rangle$ of order q

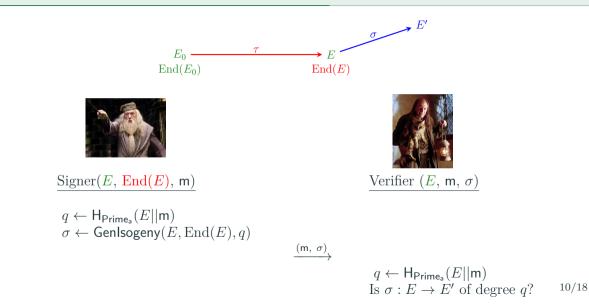
We can hence use $\operatorname{End}(E)$ as a trapdoor. In fact, computing $\operatorname{End}(E)$ is hard.









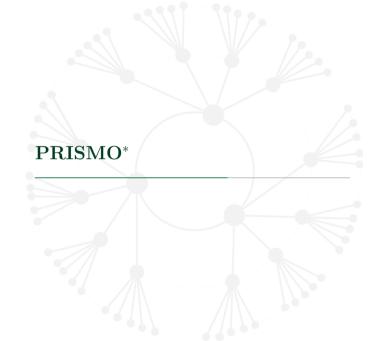


Hard problem underlying the security of PRISM*

PrimelsogenyOracle: takes as inputs a supersingular elliptic curve E defined over \mathbb{F}_{p^2} and a prime q of length a, and returns a uniformly random isogeny of degree q from E.

One more prime degree isogeny problem

Given a random supersingular elliptic curve E and a PrimelsogenyOracle, output an isogeny of degree q' where q' is a prime of length a different from all the primes q formerly queried to PrimelsogenyOracle.



Supersingular isogeny group actions

$$\pi: E \to E^{(p)}; \qquad (x,y) \mapsto (x^p, y^p)$$

If E is defined over \mathbb{F}_p , then $\pi \in \text{End}(E)$.

 \mathbb{F}_p -rational isogenies* arise from the action of some abelian group denoted by $\operatorname{cl}(\mathbb{Z}[\pi])$ on the set of supersingular elliptic curves defined over \mathbb{F}_p .

This action is a (rich) cryptography group action, and it allows to design various cryptographic protocols. Nevertheless:

- it requires larger primes compared to the generic supersingular setting,
- all existing signatures (CSI-FiSh and friends) use parallel repetitions.

PRISM is not secure when E/\mathbb{F}_p

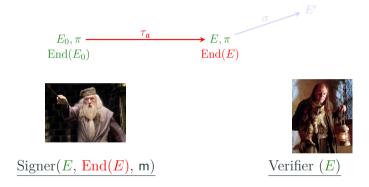
This is because we know $\pi \in \text{End}(E)$ which is not a scalar endomorphism.

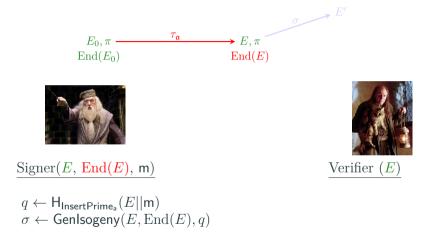
With $\pi \in \operatorname{End}(E)$ we can efficiently compute an isogeny of degree q where there exist a point P such that $\pi(\langle P \rangle) = \langle P \rangle$.

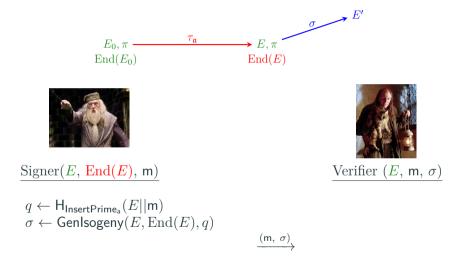
Odd primes q for which such a point exists are exactly the split (in $\mathbb{Z}[\pi]$) primes.

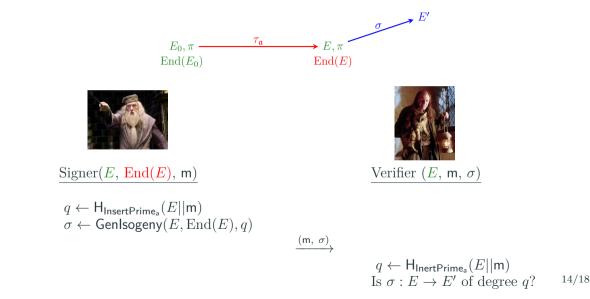
For inert primes q, no such point exists, hence the knowledge of π is useless to adversaries.

PRISMO: variant of PRISM where E/\mathbb{F}_p and the primes q are inert in $\mathbb{Z}[\pi]$.









Hard problem underlying the security of PRISMO*

PrimelsogenyOracle_O: takes as inputs a supersingular elliptic curve E defined over \mathbb{F}_p and an inert¹ prime q of length a, and returns a uniformly random isogeny of degree q from E.

One more inert prime degree isogeny problem

Given a random supersingular elliptic curve E defined over \mathbb{F}_p and a PrimelsogenyOracleO, output an isogeny of degree q' where q' is an inert prime of length a different from all the primes q formerly queried to PrimelsogenyOracleO.

¹inert in $\mathbb{Z}[\pi]$.

Results

PRISMO is more efficient and more compact compared to CSI-FiSh:

- 80x faster for signing
- 1457x faster for verification
- 29x more compact (signature size)

for NIST level I^2 .

²Supersingular isogeny group action with a 2000 bits prime.

Thanks for still being awake!

